
Machine Learning for Robotics SS 2017
Instructor: Georg Martius <georg.martius@tuebingen.mpg.de>

Due-date: 18.05.2017 (hand in at beginning of recitation session)
Exercise Sheet 4

May 11, 2017

1 Multiclass Logistic Regression

(a) Logistic regression for binary classification with y ∈ Y = {−1,+1} we use
the following model for the class probabilities:

p̂(y|x;w) =
1

1 + exp(−y〈w, x〉)
, (1)

Proof that p̂(y|x;w) is a well defined probability density w.r.t. y for any
w ∈ Rd.

(b) For y ∈ {0, 1} we typically model only p(y = 1|x;w) and defining p(y =
0|x,w) = 1− p(y = 1|x,w). The cost function becomes

L(w) =

n∑
i=1

(−y log(p̂(y|xi;w))− (1− y) log(1− p(y|xi;w))) . (2)

Show how this comes about.

For many classes we use a for each class k = 1 . . .K one parameter wk

output presenting p(y = k|x,w) and model this by the softmax :

p̂(y = k|x,W) = sk(x,w) =
exp(〈wy, x〉)∑M
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M, (3)

. We use a 1-of-K coding (also called one-hot representation) where the
target class for sample i is encoded by a vector ti which is a vector of K
zeros except for the kth element (if sample i has class label k). The cost
function is

L(W) = −
n∑

i=1

K∑
k=1

tik log sk(xi,W) (4)

which is called the cross entropy cost function.

(a) Show that for the of the softmax sk(z) = exp(zk)∑
j=1 exp(zj)

we have the

following derivative: ∂sk(z)
∂zj

= sk(z)(Ikj − sj(z))

(b) Calculate the derivative of (4) w.r.t. W .

Solution: ∆wj
L(wj) =

∑
i(sj(x

i)− tij)x
i

1

2 Train an SVM and Logistic Regression Clas-
sifier

Here we want to train different SVMs and multiclass Logistic Regression Clas-
sifier on a digit recognition task. The data for this is part of the sklearn python
package. You find a skeleton file on the Dropbox:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

Import datasets, classifiers and performance metrics

from sklearn import datasets, svm, metrics

The digits dataset

digits = datasets.load_digits()

The data that we are interested in is made of 8x8 images of digits, let’s

have a look at the first 8 images, stored in the ‘images‘ attribute of the

dataset.

images_and_labels = list(zip(digits.images, digits.target))

for index, (image, label) in enumerate(images_and_labels[:10]):

plt.subplot(2, 5, index + 1)

plt.axis(’off’)

plt.imshow(image, cmap=plt.cm.gray_r, interpolation=’nearest’)

plt.title(’Training: %i’ % label)

The dataset has 1797 points. Use half for training and a quarter for validation
and testing respectively.

(a) Train a linear SVM and a SVM with rbf kernel and visualize the output,
see module svm.SVC. Visualize some of the mistakes.

(b) For the rbf case there is the kernel size: gamma. Try 0.001 but also
perform model selection.

(c) Implement a Logistic regression classifier (use the derivatives you calcu-
lated above) and apply it to the data. Here a litte hint:

def softmax(x):

if x.ndim == 1: # for 1d input

e = np.exp(x - np.max(x)) # prevent overflow

return e / (np.sum(e, axis=0))

else: # for x having the shape: (samples,classes)

e = np.exp(x - np.max(x,axis=1,keepdims=True))

return e / (np.array([np.sum(e, axis=1)]).T) # ndim = 2

2

For numeric reasons it is useful to shift the argument to exp, such that
they are all smaller than 0.

Use gradient decent with a decreasing learning rate every step by lr=lr*0.999.
Hint: the x values of the images are pixel values in [0,32] or so. Either scale
them down to [0-1] or start with a small learning rate to avoid divergence.

(d) compare the performance

(e) Try to with some feature map of your choice, can you improve?

3

