
Lecture 8: Integrating Learning and Planning

Lecture 8: Integrating Learning and Planning

David Silver

Lecture 8: Integrating Learning and Planning

Outline

1 Introduction

2 Model-Based Reinforcement Learning

3 Integrated Architectures

4 Simulation-Based Search

Lecture 8: Integrating Learning and Planning

Introduction

Outline

1 Introduction

2 Model-Based Reinforcement Learning

3 Integrated Architectures

4 Simulation-Based Search

Lecture 8: Integrating Learning and Planning

Introduction

Model-Based Reinforcement Learning

Last lecture: learn policy directly from experience

Previous lectures: learn value function directly from experience

This lecture: learn model directly from experience

and use planning to construct a value function or policy

Integrate learning and planning into a single architecture

Lecture 8: Integrating Learning and Planning

Introduction

Model-Based and Model-Free RL

Model-Free RL

No model
Learn value function (and/or policy) from experience

Model-Based RL

Learn a model from experience
Plan value function (and/or policy) from model

Lecture 8: Integrating Learning and Planning

Introduction

Model-Based and Model-Free RL

Model-Free RL

No model
Learn value function (and/or policy) from experience

Model-Based RL

Learn a model from experience
Plan value function (and/or policy) from model

Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL

state

reward

action

At

Rt

St

Lecture 8: Integrating Learning and Planning

Introduction

Model-Based RL

state

reward

action

At

Rt

St

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Outline

1 Introduction

2 Model-Based Reinforcement Learning

3 Integrated Architectures

4 Simulation-Based Search

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Model-Based RL

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Advantages of Model-Based RL

Advantages:

Can efficiently learn model by supervised learning methods

Can reason about model uncertainty

Disadvantages:

First learn a model, then construct a value function
⇒ two sources of approximation error

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

What is a Model?

A modelM is a representation of an MDP 〈S,A,P,R〉,
parametrized by η

We will assume state space S and action space A are known

So a model M = 〈Pη,Rη〉 represents state transitions
Pη ≈ P and rewards Rη ≈ R

St+1 ∼ Pη(St+1 | St ,At)

Rt+1 = Rη(Rt+1 | St ,At)

Typically assume conditional independence between state
transitions and rewards

P [St+1,Rt+1 | St ,At] = P [St+1 | St ,At]P [Rt+1 | St ,At]

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

Model Learning

Goal: estimate modelMη from experience {S1,A1,R2, ...,ST}
This is a supervised learning problem

S1,A1 → R2, S2

S2,A2 → R3, S3

...

ST−1,AT−1 → RT ,ST

Learning s, a→ r is a regression problem

Learning s, a→ s ′ is a density estimation problem

Pick loss function, e.g. mean-squared error, KL divergence, ...

Find parameters η that minimise empirical loss

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

Examples of Models

Table Lookup Model

Linear Expectation Model

Linear Gaussian Model

Gaussian Process Model

Deep Belief Network Model

...

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

Table Lookup Model

Model is an explicit MDP, P̂, R̂
Count visits N(s, a) to each state action pair

P̂a
s,s′ =

1

N(s, a)

T∑
t=1

1(St ,At , St+1 = s, a, s ′)

R̂a
s =

1

N(s, a)

T∑
t=1

1(St ,At = s, a)Rt

Alternatively

At each time-step t, record experience tuple
〈St ,At ,Rt+1,St+1〉
To sample model, randomly pick tuple matching 〈s, a, ·, ·〉

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 0!

We have constructed a table lookup model from the experience

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Planning with a Model

Planning with a Model

Given a model Mη = 〈Pη,Rη〉
Solve the MDP 〈S,A,Pη,Rη〉
Using favourite planning algorithm

Value iteration
Policy iteration
Tree search
...

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Planning with a Model

Sample-Based Planning

A simple but powerful approach to planning

Use the model only to generate samples

Sample experience from model

St+1 ∼ Pη(St+1 | St ,At)

Rt+1 = Rη(Rt+1 | St ,At)

Apply model-free RL to samples, e.g.:

Monte-Carlo control
Sarsa
Q-learning

Sample-based planning methods are often more efficient

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Planning with a Model

Back to the AB Example

Construct a table-lookup model from real experience

Apply model-free RL to sampled experience

Real experience
A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

Sampled experience
B, 1
B, 0
B, 1
A, 0, B, 1
B, 1
A, 0, B, 1
B, 1
B, 0

e.g. Monte-Carlo learning: V (A) = 1,V (B) = 0.75

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Planning with a Model

Planning with an Inaccurate Model

Given an imperfect model 〈Pη,Rη〉 6= 〈P,R〉
Performance of model-based RL is limited to optimal policy
for approximate MDP 〈S,A,Pη,Rη〉
i.e. Model-based RL is only as good as the estimated model

When the model is inaccurate, planning process will compute
a suboptimal policy

Solution 1: when model is wrong, use model-free RL

Solution 2: reason explicitly about model uncertainty

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Outline

1 Introduction

2 Model-Based Reinforcement Learning

3 Integrated Architectures

4 Simulation-Based Search

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)

S ′ ∼ Pa
s,s′

R = Ra
s

Simulated experience Sampled from model (approximate MDP)

S ′ ∼ Pη(S ′ | S ,A)

R = Rη(R | S ,A)

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Integrating Learning and Planning

Model-Free RL

No model
Learn value function (and/or policy) from real experience

Model-Based RL (using Sample-Based Planning)

Learn a model from real experience
Plan value function (and/or policy) from simulated experience

Dyna

Learn a model from real experience
Learn and plan value function (and/or policy) from real and
simulated experience

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Integrating Learning and Planning

Model-Free RL

No model
Learn value function (and/or policy) from real experience

Model-Based RL (using Sample-Based Planning)

Learn a model from real experience
Plan value function (and/or policy) from simulated experience

Dyna

Learn a model from real experience
Learn and plan value function (and/or policy) from real and
simulated experience

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Integrating Learning and Planning

Model-Free RL

No model
Learn value function (and/or policy) from real experience

Model-Based RL (using Sample-Based Planning)

Learn a model from real experience
Plan value function (and/or policy) from simulated experience

Dyna

Learn a model from real experience
Learn and plan value function (and/or policy) from real and
simulated experience

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Dyna Architecture

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Dyna-Q Algorithm

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Dyna-Q on a Simple Maze

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Dyna-Q with an Inaccurate Model

The changed environment is harder

Lecture 8: Integrating Learning and Planning

Integrated Architectures

Dyna

Dyna-Q with an Inaccurate Model (2)

The changed environment is easier

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Outline

1 Introduction

2 Model-Based Reinforcement Learning

3 Integrated Architectures

4 Simulation-Based Search

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Forward Search

Forward search algorithms select the best action by lookahead

They build a search tree with the current state st at the root

Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

No need to solve whole MDP, just sub-MDP starting from now

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Simulation-Based Search

Forward search paradigm using sample-based planning

Simulate episodes of experience from now with the model

Apply model-free RL to simulated episodes

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Simulation-Based Search (2)

Simulate episodes of experience from now with the model

{skt ,Ak
t ,R

k
t+1, ...,S

k
T}Kk=1 ∼Mν

Apply model-free RL to simulated episodes

Monte-Carlo control → Monte-Carlo search
Sarsa → TD search

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Simple Monte-Carlo Search

Given a model Mν and a simulation policy π

For each action a ∈ A
Simulate K episodes from current (real) state st

{st , a,Rk
t+1,S

k
t+1,A

k
t+1, ...,S

k
T}Kk=1 ∼Mν , π

Evaluate actions by mean return (Monte-Carlo evaluation)

Q(st , a) =
1

K

K∑
k=1

Gt
P→ qπ(st , a)

Select current (real) action with maximum value

at = argmax
a∈A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search (Evaluation)

Given a model Mν

Simulate K episodes from current state st using current
simulation policy π

{st ,Ak
t ,R

k
t+1,S

k
t+1, ...,S

k
T}Kk=1 ∼Mν , π

Build a search tree containing visited states and actions

Evaluate states Q(s, a) by mean return of episodes from s, a

Q(s, a) =
1

N(s, a)

K∑
k=1

T∑
u=t

1(Su,Au = s, a)Gu
P→ qπ(s, a)

After search is finished, select current (real) action with
maximum value in search tree

at = argmax
a∈A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search (Simulation)

In MCTS, the simulation policy π improves

Each simulation consists of two phases (in-tree, out-of-tree)

Tree policy (improves): pick actions to maximise Q(S ,A)
Default policy (fixed): pick actions randomly

Repeat (each simulation)

Evaluate states Q(S ,A) by Monte-Carlo evaluation
Improve tree policy, e.g. by ε− greedy(Q)

Monte-Carlo control applied to simulated experience

Converges on the optimal search tree, Q(S ,A)→ q∗(S ,A)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Case Study: the Game of Go

The ancient oriental game of
Go is 2500 years old

Considered to be the hardest
classic board game

Considered a grand
challenge task for AI
(John McCarthy)

Traditional game-tree search
has failed in Go

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Rules of Go

Usually played on 19x19, also 13x13 or 9x9 board

Simple rules, complex strategy

Black and white place down stones alternately

Surrounded stones are captured and removed

The player with more territory wins the game

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Position Evaluation in Go

How good is a position s?

Reward function (undiscounted):

Rt = 0 for all non-terminal steps t < T

RT =

{
1 if Black wins
0 if White wins

Policy π = 〈πB , πW 〉 selects moves for both players

Value function (how good is position s):

vπ(s) = Eπ [RT | S = s] = P [Black wins | S = s]

v∗(s) = max
πB

min
πW

vπ(s)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Monte-Carlo Evaluation in Go

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (1)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (2)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (3)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (4)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (5)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Advantages of MC Tree Search

Highly selective best-first search

Evaluates states dynamically (unlike e.g. DP)

Uses sampling to break curse of dimensionality

Works for “black-box” models (only requires samples)

Computationally efficient, anytime, parallelisable

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Example: MC Tree Search in Computer Go

Jul 06 Jan 07 Jul 07 Jan 08 Jul 08 Jan 09 Jul 09 Jan 10 Jul 10 Jan 11

 MoGo

MoGo

MoGoCrazyStone

CrazyStone

Fuego

Zen

Zen

Zen

Zen

Erica

GnuGo*

GnuGo*

 ManyFaces*

ManyFaces

ManyFaces

ManyFaces

ManyFaces

ManyFaces

ManyFaces

Aya*

Aya*

Aya

Aya

Aya

Aya

Indigo

10 kyu

9 kyu

8 kyu

7 kyu

6 kyu

5 kyu

4 kyu

3 kyu

2 kyu

1 kyu

1 dan

2 dan

3 dan

4 dan

5 dan

Foo

1

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

Temporal-Difference Search

Simulation-based search

Using TD instead of MC (bootstrapping)

MC tree search applies MC control to sub-MDP from now

TD search applies Sarsa to sub-MDP from now

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

MC vs. TD search

For model-free reinforcement learning, bootstrapping is helpful

TD learning reduces variance but increases bias
TD learning is usually more efficient than MC
TD(λ) can be much more efficient than MC

For simulation-based search, bootstrapping is also helpful

TD search reduces variance but increases bias
TD search is usually more efficient than MC search
TD(λ) search can be much more efficient than MC search

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

TD Search

Simulate episodes from the current (real) state st

Estimate action-value function Q(s, a)

For each step of simulation, update action-values by Sarsa

∆Q(S ,A) = α(R + γQ(S ′,A′)− Q(S ,A))

Select actions based on action-values Q(s, a)

e.g. ε-greedy

May also use function approximation for Q

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

Dyna-2

In Dyna-2, the agent stores two sets of feature weights

Long-term memory
Short-term (working) memory

Long-term memory is updated from real experience
using TD learning

General domain knowledge that applies to any episode

Short-term memory is updated from simulated experience
using TD search

Specific local knowledge about the current situation

Over value function is sum of long and short-term memories

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

Results of TD search in Go

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Temporal-Difference Search

Questions?

