Lecture 8: Integrating Learning and Planning

Lecture 8: Integrating Learning and Planning

David Silver

Lecture 8: Integrating Learning and Planning

Outline

Introduction

Model-Based Reinforcement Learning

Integrated Architectures

Simulation-Based Search

Lecture 8: Integrating Learning and Planning

‘— Introduction

Outline

Introduction

Lecture 8: Integrating Learning and Planning

L Introduction

Model-Based Reinforcement Learning

Last lecture: learn policy directly from experience

Previous lectures: learn value function directly from experience

[
[

m This lecture: learn model directly from experience

m and use planning to construct a value function or policy
[

Integrate learning and planning into a single architecture

Lecture 8: Integrating Learning and Planning

L Introduction

Model-Based and Model-Free RL

m Model-Free RL

m No model
m Learn value function (and/or policy) from experience

Lecture 8: Integrating Learning and Planning

L Introduction

Model-Based and Model-Free RL

m Model-Free RL

m No model
m Learn value function (and/or policy) from experience

m Model-Based RL

m Learn a model from experience
m Plan value function (and/or policy) from model

Lecture 8: Integrating Learning and Planning

‘— Introduction

Model-Free RL

reward

Ry

action

A

t

Lecture 8: Integrating Learning and Planning

‘— Introduction

Model-Based RL

reward

Ry

action

A

t

Lecture 8: Integrating Learning and Planning

L Model-Based Reinforcement Learning

Outline

Model-Based Reinforcement Learning

Lecture 8: Integrating Learning and Planning

L Model-Based Reinforcement Learning

Model-Based RL

value/policy
acting
planning
model experience
model

learning

Lecture 8: Integrating Learning and Planning

L Model-Based Reinforcement Learning

Advantages of Model-Based RL

Advantages:
m Can efficiently learn model by supervised learning methods
m Can reason about model uncertainty

Disadvantages:

m First learn a model, then construct a value function
= two sources of approximation error

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
LLeaming a Model

What is a Model?

m A model M is a representation of an MDP (S, A, P, R),
parametrized by 7

m We will assume state space S and action space A are known

m So a model M = (P,,R,) represents state transitions
Py, = P and rewards R, =~ R

Ser1 ~ Py(Sts1 | St, At)
Rit1 = Ry(Res1 | St, At)

m Typically assume conditional independence between state
transitions and rewards

P[Str1, Rev1 | St, Adl = P[Sey1 | S, Al P[Rey1 | St Ad

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
LLeaming a Model

Model Learning

m Goal: estimate model M,, from experience {51, A1, Ro, ..., 57}

m This is a supervised learning problem

S51,A1 = R, S
S$,A = R3, 53

St-1,At-1 = RT, 57

Learning s, a — r is a regression problem
Learning s,a — s’ is a density estimation problem

Pick loss function, e.g. mean-squared error, KL divergence, ...

Find parameters 1 that minimise empirical loss

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
LLeaming a Model

Examples of Models

Table Lookup Model
Linear Expectation Model
Linear Gaussian Model

Gaussian Process Model
Deep Belief Network Model

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
LLeaming a Model

Table Lookup Model

m Model is an explicit MDP, P, R

m Count visits N(s, a) to each state action pair

T
N 1
a ;7 — 1 A = !
Ps,s N(S, a) ; (St7 ts St+1 s,a,s)
1 T
R? = N(S, 3) Z I(ShAt =5, a)Rt

m Alternatively

m At each time-step t, record experience tuple
(St, At, Ret1, Sev1)
m To sample model, randomly pick tuple matching (s, a, -, -)

Lecture 8: Integrating Learning and Planning

L Model-Based Reinforcement Learning

L Learning a Model

AB Example

Two states A, B; no discounting; 8 episodes of experience

A,0,B,0

B, 1 r=1 .
B,1

B,1 r=20 15%
B, 1 oo™

B,l r=20
B,1

B, 0 []

We have constructed a table lookup model from the experience

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
LPlanning with a Model

Planning with a Model

m Given a model M,, = (P, Ry)
m Solve the MDP (S, A, P, R,)

m Using favourite planning algorithm

m Value iteration
m Policy iteration
m Tree search
n

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
L Planning with a Model

Sample-Based Planning

m A simple but powerful approach to planning
m Use the model only to generate samples

m Sample experience from model

5,_»_,_1 ~ Pn(st-i-l | Sta At)
Rt+1 = Rn(Rt—i-l | 51.‘7 At)

m Apply model-free RL to samples, e.g.:

m Monte-Carlo control
m Sarsa
m Q-learning

m Sample-based planning methods are often more efficient

Lecture 8: Integrating Learning and Planning

L Model-Based Reinforcement Learning

L Planning with a Model

Back to the AB Example

m Construct a table-lookup model from real experience

m Apply model-free RL to sampled experience

Real experience Sampled experience
A, 0, B, 0 B, 1
B, 1 B, 0
B, 1 =0 B, 1
B, 1 Ao A, 0 B, 1
B, 1 100% B, 1
B, 1 A 0 B, 1
B, 1 B, 1
B, 0 B, 0

e.g. Monte-Carlo learning: V(A) =1, V(B) =0.75

Lecture 8: Integrating Learning and Planning
L Model-Based Reinforcement Learning
L Planning with a Model

Planning with an Inaccurate Model

m Given an imperfect model (P,, R,) # (P, R)

m Performance of model-based RL is limited to optimal policy
for approximate MDP (S, A, P, Ry)

m i.e. Model-based RL is only as good as the estimated model

m When the model is inaccurate, planning process will compute
a suboptimal policy

m Solution 1: when model is wrong, use model-free RL

m Solution 2: reason explicitly about model uncertainty

Lecture 8: Integrating Learning and Planning

‘—Integrated Architectures

Outline

Integrated Architectures

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)

S/ ~ P;s/
R =R?

Simulated experience Sampled from model (approximate MDP)

S ~Py(S'| S, A)
R=TR,(R|S,A)

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Integrating Learning and Planning

m Model-Free RL

m No model
m Learn value function (and/or policy) from real experience

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Integrating Learning and Planning

m Model-Free RL

m No model

m Learn value function (and/or policy) from real experience
m Model-Based RL (using Sample-Based Planning)

m Learn a model from real experience
m Plan value function (and/or policy) from simulated experience

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Integrating Learning and Planning

m Model-Free RL

m No model

m Learn value function (and/or policy) from real experience
m Model-Based RL (using Sample-Based Planning)

m Learn a model from real experience

m Plan value function (and/or policy) from simulated experience
m Dyna

m Learn a model from real experience

m Learn and plan value function (and/or policy) from real and
simulated experience

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Dyna Architecture

value/policy
acting
planning direct
RL
model experience
model

learning

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
(a) S + current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Execute action A; observe resultant reward, R, and state, S’
(d) Q(S,A) + Q(S,A) + a[R +ymax, Q(S,a) — Q(S, A)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" < Model(S, A)
Q(S,A) + Q(S,A) + a[R +ymax, Q(S',a) — Q(S, A)]

Lecture 8: Integrating Learning and Planning

L Integrated Architectures
L Dyna

Dyna-Q on a Simple Maze

800+

S

600 actions
Steps 0 planning steps
per 400 (direct RL only)
episode 5 planning steps
50 planning steps

2004
14

Lecture 8: Integrating Learning and Planning

L Integrated Architectures
L Dyna

Dyna-Q with an Inaccurate Model

m The changed environment is harder

Cumulative
reward

0 1000 2000 3000
Time steps

Lecture 8: Integrating Learning and Planning
L Integrated Architectures
LDyna

Dyna-Q with an Inaccurate Model (2)

m The changed environment is easier

[TTTTTTIe] : I I I A
L] ; |

[TIs] [TIs T 1]

4001
Dyna-Q
Cumulative Dyna-AC
reward 1 :
0L : .
0 3000 6000

Time steps

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

Outline

Simulation-Based Search

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

Forward Search

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

S,

m No need to solve whole MDP, just sub-MDP starting from now

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

Simulation-Based Search

m Forward search paradigm using sample-based planning
m Simulate episodes of experience from now with the model

m Apply model-free RL to simulated episodes
S

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

Simulation-Based Search (2)

m Simulate episodes of experience from now with the model
k Ak pk k1K
{s, Af Rty ooy ST k=1 ~ M,y

m Apply model-free RL to simulated episodes

m Monte-Carlo control — Monte-Carlo search
m Sarsa — TD search

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L Monte-Carlo Search

Simple Monte-Carlo Search

m Given a model M,, and a simulation policy 7
m For each action a € A
m Simulate K episodes from current (real) state s;

k ck pk kYK
{st;a, RE 1, S5 1 Afyts s ST ~ My,

m Evaluate actions by mean return (Monte-Carlo evaluation)
1K
P
Q(st,a) = K Z Gt = Gx(st; a)
k=1

m Select current (real) action with maximum value

a; = argmax Q(st, a)
acA

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L Monte-Carlo Search

Monte-Carlo Tree Search (Evaluation)

m Given a model M,
m Simulate K episodes from current state s; using current
simulation policy m

k k1K
{s¢, A, t+175t+17"‘75T}k:1 ~ My,

m Build a search tree containing visited states and actions
m Evaluate states Q(s, a) by mean return of episodes from s, a

P
Q(s,a) = N 2) ZZI(SU,A s,a)G, = gx(s, a)

=1 u=t
m After search is finished, select current (real) action with
maximum value in search tree

a; = argmax Q(st, a)
acA

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L Monte-Carlo Search

Monte-Carlo Tree Search (Simulation)

In MCTS, the simulation policy 7w improves

Each simulation consists of two phases (in-tree, out-of-tree)
m Tree policy (improves): pick actions to maximise Q(S, A)
m Default policy (fixed): pick actions randomly

Repeat (each simulation)

m Evaluate states Q(S, A) by Monte-Carlo evaluation
m Improve tree policy, e.g. by € — greedy(Q)

Monte-Carlo control applied to simulated experience

Converges on the optimal search tree, Q(S, A) — g«(S, A)

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Case Study: the Game of Go

m The ancient oriental game of
Go is 2500 years old

m Considered to be the hardest
classic board game

m Considered a grand
challenge task for Al
(John McCarthy)

m Traditional game-tree search
has failed in Go

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L McTS in Go

Rules of Go

m Usually played on 19x19, also 13x13 or 9x9 board
m Simple rules, complex strategy
m Black and white place down stones alternately
m Surrounded stones are captured and removed
m The player with more territory wins the game

] BT
E5 B

‘)

6 e e |
|

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L McTS in Go

Position Evaluation in Go

m How good is a position s?

m Reward function (undiscounted):

R: = 0 for all non-terminal steps t < T

R — 1 if Black wins
"= 0 if White wins

m Policy m = (g, myw) selects moves for both players

m Value function (how good is position s):

vr(s) =E;[R7 | S = s] = P[Black wins | S = s]

Vi (s) = max min v, (s)
T W

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Monte-Carlo Evaluation in Go

V(s)=2/4=05 /%\Current position s

C

e
=

ﬁ I

Simulation

e

- - A E
el iy g e T

= [Eﬂﬂ~

Outcomes

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L McTS in Go

Applying Monte-Carlo Tree Search (1)

Current state —Pﬁ t Tree Policy
@

Default Policy

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L McTS in Go

Applying Monte-Carlo Tree Search (2)

Current state —
Tree Policy

Default Policy

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Applying Monte-Carlo Tree Search (3)

Current state —» &

ﬁ ® Tree Policy

Default Policy

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Applying Monte-Carlo Tree Search (4)

Current state — &

Tree Policy

Default Policy

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Applying Monte-Carlo Tree Search (5)

Current state —» (&

Tree Policy

Default Policy

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search
L McTS in Go

Advantages of MC Tree Search

Highly selective best-first search

Evaluates states dynamically (unlike e.g. DP)

Uses sampling to break curse of dimensionality

Works for “black-box” models (only requires samples)

Computationally efficient, anytime, parallelisable

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L MCTS in Go

Example: MC Tree Search in Computer Go

5 dan
4 dan Zen|
3 dan - Zen 1
2 dan [Zen ManyFaces -
1dan | Zen ManyFaceaya -

1kyu | CrazyStone ManyFace8y4 E

2 kyu > eMoGo FuegoanyFaces Aya g
3 kyu [M/ Aya ManyFaces -

4 kyu / ManyFaces B

5 kyu .. .GnuGo* B

6 kyu

7 kyu | /
/

/ <
8 kyu IfdigofMoCGioAya*ManyFaces” B

9 kyu Aya* J

10 kVLl Il Il Il Il Il Il Il Il
" Jul 0B Jan 07 Julo7 Jan 08 Jul 08 Jan 09 Jul 09 Jan 10 Jul 10 Jan 11

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search

LTemporaI—DifFerence Search

Temporal-Difference Search

Simulation-based search
Using TD instead of MC (bootstrapping)
MC tree search applies MC control to sub-MDP from now

TD search applies Sarsa to sub-MDP from now

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search

LTemporaI—DifFerence Search

MC vs. TD search

m For model-free reinforcement learning, bootstrapping is helpful

m TD learning reduces variance but increases bias
m TD learning is usually more efficient than MC
m TD(\) can be much more efficient than MC

m For simulation-based search, bootstrapping is also helpful

m TD search reduces variance but increases bias
m TD search is usually more efficient than MC search
m TD()) search can be much more efficient than MC search

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search

LTemporaI—DifFerence Search

TD Search

Simulate episodes from the current (real) state s;

Estimate action-value function Q(s, a)

For each step of simulation, update action-values by Sarsa

AQ(S,A) = a(R+vQ(S',A) — Q(S, A))

m Select actions based on action-values Q(s, a)
m e.g. e-greedy

May also use function approximation for @

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search

LTemporaI—DifFerence Search

Dyna-2

In Dyna-2, the agent stores two sets of feature weights

m Long-term memory
m Short-term (working) memory

Long-term memory is updated from real experience
using TD learning

m General domain knowledge that applies to any episode

Short-term memory is updated from simulated experience
using TD search

m Specific local knowledge about the current situation

Over value function is sum of long and short-term memories

Lecture 8: Integrating Learning and Planning

L Simulation-Based Search

L Temporal-Difference Search

Results of TD search in Go

Wins vs. GnuGo

80
—&— TD Learning + TD Search /
70 —|—=—TD Search »
—#—— TD Learning /7‘
—a— UCT
60 /
P4
/
50 / / A
40 4
/ / /
30 / /
20 / /
————
L
0 —
1 10 100 1000 10000 100000

Simulations

Lecture 8: Integrating Learning and Planning
L Simulation-Based Search

LTemporaI—DifFerence Search

Questions?

