Machine Learning for Robotics Intelligent Systems Series

Georg Martius

MPI for Intelligent Systems, Tübingen, Germany

April 19, 2017

Organizational structure of the lecture

- Teaching language is English, although you can ask in German
- Mondays 12 c.t.–14:00 Lectures
- Thursdays 12 c.t.–14:00 Recitations
- Exercises:
 - · exercise sheets have to be returned in the following week
 - Need 50% passed sheets to be eligible for passing the course
 - Later in the course we will have projects
 - final exam will most likely be a presentation of the final project
- Lecture notes: mostly black board, but there will be background material to read
- Webpage: georg.playfulmachines.com/ course-machine-learning-for-robotics
- Next week Monday (24th) is canceled (moved to today)

Machine Learning Overview

Machine learning is not voodoo,

it is about automatically finding a function that best solves a given task.

Three different classes of tasks:

Georg Martius

Supervised Learning

given: $\{x, y\}_i \sim D$ with data point $x \in \mathbb{R}^n$ and label $y \in \mathcal{Y}$ and D the data distribution. What to find function $h(\cdot)$ such that

What to find function $h(\cdot)$ such that

$$h(x) = y \quad \forall (x, y) \sim D$$

To measure quality of h and to be able to optimize something: Define loss function

$$J(h) = \mathbb{E}_{\mathcal{D}}[\mathsf{dist}(y, h(x))]$$

(distance between true label y and predicted label f(x))

Task: find function that minimized loss: $h^* = \arg \min_h J(h)$

Math can be so easy ;-)

We will see why this is not so easy in practice.

Georg Martius

Supervised Learning – Examples

Classification: \mathcal{Y} is discrete Examples:

(MNIST)

Classify pathology images:

(Mitosis in breast cancer)

Regression: \mathcal{Y} is continuous

Examples: Predicting Ozon levels

Predicting torques

Unsupervised Learning

given: $\{x\}_i$ with $x \in \mathbb{R}^n$ What to find function $f(\cdot)$ such that f(x) = y where y low dimensional, e.g. a cluster number

- Much less clear what is the objective.
- Many algorithms but no unifying theory.

Unsupervised Learning – Examples

Clustering: discrete y Examples: Genome comparison:

(by Tao Xie)

Both cases are expecially useful for high-dimensional data

Dim. reduction: continuous y Examples: Finding descriptors for face expressions

(by Sam T Rowels)

Reinforcement Learning

given:

- system to interact with: $s_{t+1} = S(a_t, s_t)$ where s_t is the state and a_t is the action.
- reward/utility function: $r_t = U(a_t, s_t)$

What to find function $f(\cdot)$ (policy) such that a = f(s) and $\mathbb{E}[r]$ is maximized.

In general: stochastic systems formulated as Markov Decision Processes.

- Need to simultaneously learn *f* and potentially models of *S* and *U*.
- Reward can be sparse (e.g. only at the end of an long action sequence)

Reiforcement Learning – Examples

Robot Control

(by MPI-IS)

Deepmind AlphaGo

⁽go-baduk-weiqi.de)

Improve performance by learning from experience and exploring new strategies.

Rough plan of the course

- Supervised learning
 - linear regression, regularization, model selection, ...
 - neural networks
- Unsupervised learning
 - Clustering: k-means, spectral, DBSCAN?, ...
 - Dimensionality reduction: PCA, ICA, LLE, ISOMAP?, Autoencoder, sparse coding and learning representations
- Reinforcement Learning
 - Markov Decision Processes (MDPs) and background
 - Bellman equations and TD learning, Q-Learning, ...
 - Continuous Spaces:
 - Actor-Critic
 - Reinforcement Learning with parametrized policies
 - Episodic RL as parametrized optimization problem
 - Bayesian optimization for RL?
- if there is time: Artificial Curiosity, ...