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Organizational structure of the lecture

@ Teaching language is English, although you can ask in German
@ Mondays 12 c.t.—14:00 Lectures

@ Thursdays 12 c.t.—14:00 Recitations

@ Exercises:

o exercise sheets have to be returned in the following week

o Need 50% passed sheets to be eligible for passing the course
e Later in the course we will have projects

o final exam will most likely be a presentation of the final project

Lecture notes: mostly black board, but there will be background material
to read

@ Webpage: georg.playfulmachines.com/
course-machine-learning-for-robotics

@ Next week Monday (24th) is canceled (moved to today)
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Machine Learning Overview

Machine learning is not voodoo,
it is about automatically finding a function that best solves a given task. J

Three different classes of tasks:
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Machine Learning Overview

Supervised Learning

given: {x,y}; ~ D with data point x € R” and label y € ) and D the data
distribution.
What to find function A(-) such that

h(x)=y V(x,y)~D

To measure quality of # and to be able to optimize something: Define loss
function
J(h) = Epldist(y, h(x))]

(distance between true label y and predicted label f(x))

Task: find function that minimized loss: 7* = argmin,, J(h)

Math can be so easy ;-)

v

We will see why this is not so easy in practice.
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Classification: ) is discrete
Examples:
Recognize handwritten digits:
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Classﬁy pathology images:

Supervised Learning — Examples
Regression:

IST)

(Mitosis in breast cancer)
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) IS continuous
Examples:
Predicting Ozon levels
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Machine Learning Overview

Unsupervised Learning

given: {x}; withx e R”
What to find function f(-) such that f(x) = y where y low dimensional, e.g. a
cluster number

@ Much less clear what is the objective.
@ Many algorithms but no unifying theory.
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Unsupervised Learning — Examples

Clustering: discrete y Dim. reduction: continuous y
Examples: Examples:

Genome comparison: Finding descriptors for face
. . expressions
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(by Tao Xie)

Both cases are expecially useful for
high-dimensional data
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(by Sam T Rowels)
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Machine Learning Overview

Reinforcement Learning
given:

@ system to interact with: s,.; = S(a,,s;) where s, is the state and «, is the
action.

@ reward/utility function: r, = U(ay, s,)
What to find function f(-) (policy) such that a = f(s) and E[r] is maximized.

In general: stochastic systems formulated as Markov Decision Processes.

@ Need to simultaneously learn f and potentially models of S and U.
@ Reward can be sparse (e.g. only at the end of an long action sequence)

Georg Martius Machine Learning for Robotics April 19, 2017 8/10



Reiforcement Learning — Examples

Robot Control Deepmind AlphaGo
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(by MPI-IS)
go-baduk-weiqi.de)

Improve performance by learning from experience
and exploring new strategies.
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Rough plan of the course

@ Supervised learning
e linear regression, regularization, model selection, ...
@ neural networks
@ Unsupervised learning
o Clustering: k-means, spectral, DBSCAN?, ...
e Dimensionality reduction: PCA, ICA, LLE, ISOMAP?, Autoencoder, sparse
coding and learning representations
@ Reinforcement Learning
@ Markov Decision Processes (MDPs) and background

@ Bellman equations and TD learning, Q-Learning, ...
e Continuous Spaces:

@ Actor-Critic
@ Reinforcement Learning with parametrized policies
@ Episodic RL as parametrized optimization problem

@ Bayesian optimization for RL?
@ if there is time: Artificial Curiosity, . ..
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