
Machine Learning for Robotics
Intelligent Systems Series

Lecture 3

Georg Martius
Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

May 8, 2017

1 / 50

Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

X
p(1|x)=0.9
p(2|x)=0.0
p(3|x)=0.1

p(1|x)=0.7
p(2|x)=0.2
p(3|x)=0.1

p(1|x)=0.1
p(2|x)=0.8
p(3|x)=0.1

p(1|x)=0.01 p(2|x)=0.98

p(3|x)=0.01

Use a decision tree. (introduced next)

2 / 50

Decision Trees – a short intro (analysis: Breiman 1980s)

Task: decide what to do today

yes no

work

yes no

play
tennis

read
book

Classifier has a tree structure:
• each interior node makes a decision:

it picks an attribute within x,
branches for each possible value

• each leaf has one output label
• to classify a new example, we

I put it into the root node,
I follow the decisions until we reach

a leaf.
I use the leaf value as the prediction

Decisions trees (’expert systems’) are popular especially for non-experts:
• easy to use, and interpretable.

3 / 50

How to automatically build a decision tree

Given: training set D = {(x1, y1), . . . , (xn, yn)}.

Convention:
• each node contains a subset of examples,
• its label is the majority label of the examples in this node (any of the
majority labels, if there’s a tie)

Decision Tree – Training
initialize: put all examples in root node
mark root as active
repeat

pick active node with largest number of misclassified examples
mark the node as inactive
for each attributes, check error rate of splitting along this attribute
keep the split with smallest error, if any, and mark children as active

until no more active nodes.

4 / 50

How to automatically build a decision tree

Decision Tree – Classification
input decision tree, example x

assign x to root node
while x not in leaf node do
move x to child according to the test in node

end while
output label of the leaf that x is in

5 / 50

Decision Trees Example - Training phase

Training data: Zoe (our customer) selected whom she would like to date from
a list of profiles

X Y
person eyes handsome height sex soccer date?
Apu blue yes tall M no yes
Bernice brown yes short F no no
Carl blue no tall M no yes
Doris green yes short F no no
Edna brown no short F yes no
Prof. Frink brown yes tall M yes no
Gil blue no tall M yes no
Homer green yes short M no yes
Itchy brown no short M yes yes

6 / 50

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:

eyes

green (D,n)
(H,y)

majority
vote: y

accuracy:
1/2

brown

(B,n)
(E,n)
(F,n)
(I,y)

majority
vote: n

accuracy:
3/4

blue
(A,y)
(C,y)
(G,n)

majority
vote: y

accuracy:
2/3

Total accuracy eyes: 6/9

7 / 50

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:

handsome

no

(C,y)
(E,n)
(G,n)
(I,y)

majority
vote: y

accuracy:
2/4

yes

(A,y)
(B,n)
(D,n)
(F,n)
(H,y)

majority
vote: n

accuracy:
3/5

Total accuracy handsome: 5/9

8 / 50

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:
feature accuracies → total
eyes blue: (2/3), brown: (3/4), green: (1/2) → total: (6/9)

handsome yes: (3/5), no: (2/4) → total: (5/9)
height tall: (2/4), short: (3/5) → total: (5/9)

sex male: (4/6), female: (3/3) → total: (7/9)
soccer yes: (3/4), no: (3/6) → total: (6/9)

Best feature: sex.

9 / 50

Decision Trees Example - Training phase

Step 1 result: first split ist along sex feature
sex

m/ \f
(A,y),(C,y),(F,n),(G,n),(H,y),(I,y) (B,n), (D,n), (E,n)

Right node: no mistakes, no more splits
Left node: run checks again for remaining data

10 / 50

Step 2:

person eyes handsome height sex soccer date?
Apu blue yes tall male no yes
Carl blue no tall male no yes
Frink brown yes tall male yes no
Gil blue no tall male yes no

Homer green yes short male no yes
Itchy brown no short male yes yes

feature accuracies → total
eyes blue: (2/3), brown: (1/2), green: (1/1) → total: (4/6)

handsome yes: (2/3), no: (2/3) → total: (4/6)
height tall: (2/4), short: (2/2) → total: (4/6)

sex male: (4/6) → total: (4/6)
soccer yes: (2/3), no: (3/3) → total: (5/6)

Best feature: soccer.

11 / 50

Decision Trees Example - Training phase

Step 2 result: second split ist along soccer feature

sex
m/ \f

soccer (B,n), (D,n), (E,n)
n/ \y

(A,y),(C,y),(H,y) (F,n),(G,n),(I,y)

Left node: no mistakes, no more splits
Right node: run checks again for remaining data

12 / 50

Decision Trees Example - Training phase

Step 3 result: third split is along height feature

sex
m/ \f

soccer (B,n), (D,n), (E,n)
n/ \y

(A,y),(C,y),(H,y) height
short/ \tall
(I,y) (F,n),(G,n)

Left node: no mistakes, no more splits
Right node: no mistakes, no more splits

→ Decision tree learning complete.

13 / 50

Decision Trees Example - Training phase

Step 3 result: third split is along height feature

sex
m/ \f

soccer label: no
n/ \y

label: yes height
short/ \tall

label: yes label: no

Left node: no mistakes, no more splits
Right node: no mistakes, no more splits

→ Decision tree learning complete.

13 / 50

Decision Trees Example - How good is this classifier?

On all training examples it is correct by construction!
What if we check on new data of the same kind?

person eyes handsome height sex soccer date?

tree

Jimbo blue no tall M no yes

yes

Krusty green yes short M yes no

yes

Lisa blue yes tall F no no

no

Moe brown no short M no no

yes

Ned brown yes short M no yes

yes

Quimby blue no tall M no yes

yes

2 mistakes in 6, hm...

Observation
Decision trees don’t generalize very well.

Random forest
combines many trees, with random set of splitting features

14 / 50

Decision Trees Example - How good is this classifier?

On all training examples it is correct by construction!
What if we check on new data of the same kind?

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes yes
Krusty green yes short M yes no yes
Lisa blue yes tall F no no no
Moe brown no short M no no yes
Ned brown yes short M no yes yes
Quimby blue no tall M no yes yes

2 mistakes in 6, hm...

Observation
Decision trees don’t generalize very well.

Random forest
combines many trees, with random set of splitting features

14 / 50

Decision Trees

• Categorial data can often be handled nicely by a tree.

• For continuous data, X = Rd, one typically uses splits by comparing any
coordinate by a threshold: Jxi ≥ θK?

• Finding a split consists of checking all i = 1, . . . , d and all (reasonable)
thresholds, e.g. all x1

i , . . . , x
n
i

• If d is large, and all dimension are roughly of equal importance (e.g. time
series), this is tedious, and the resulting tree might not be good.

15 / 50

Back to: Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

For example, using a decision tree:
• training: build a tree
• prediction: for new example x, find its leaf
• output p̂(y|x) = ny

n , where
I n is the number of examples in the leaf,
I ny is the number of example of label y in the leaf.

Note: prediction rule
c(x) = argmax

y
p̂(y|x)

is predicts the most frequent label in each leaf.

16 / 50

Back to: Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

For example, using a decision tree:
• training: build a tree
• prediction: for new example x, find its leaf
• output p̂(y|x) = ny

n , where
I n is the number of examples in the leaf,
I ny is the number of example of label y in the leaf.

Note: prediction rule
c(x) = argmax

y
p̂(y|x)

is predicts the most frequent label in each leaf.

16 / 50

Parametric Discriminative Model: Logistic Regression

Setting. We assume X ⊆ Rd and Y = {−1,+1}.

Definition (Logistic Regression (LogReg) Model)
Modeling

p̂(y|x;w) = 1
1 + exp(−y〈w, x〉) ,

with parameter vector w ∈ Rd is called a logistic regression model.

Lemma
p̂(y|x;w) is a well defined probability density w.r.t. y for any w ∈ Rd.
Proof. elementary.

17 / 50

Parametric Discriminative Model: Logistic Regression

Setting. We assume X ⊆ Rd and Y = {−1,+1}.

Definition (Logistic Regression (LogReg) Model)
Modeling

p̂(y|x;w) = 1
1 + exp(−y〈w, x〉) ,

with parameter vector w ∈ Rd is called a logistic regression model.

Lemma
p̂(y|x;w) is a well defined probability density w.r.t. y for any w ∈ Rd.
Proof. elementary.

17 / 50

How to set the weight vector w (based on D)

Logistic Regression Training
Given a training set D = {(x1, y1), . . . , (xn, yn)}, logistic regression training
sets the free parameter vector as

wLR = argmin
w∈Rd

n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)

Lemma (Conditional Likelihood Maximization)
wLR from Logistic Regression training maximizes the conditional data likelihood
w.r.t. the LogReg model,

wLR = argmax
w∈Rd

p̂(y1, . . . , yn|x1, . . . , xn, w)

18 / 50

Proof.
Maximizing

p̂(DY |DX , w) i.i.d.=
n∏
i=1

p̂(yi|xi, w)

is equivalent to minimizing its negative logarithm

− log p̂(DY |DX , w) = − log
n∏
i=1

p̂(yi|xi, w) = −
n∑
i=1

log p̂(yi|xi, w)

= −
n∑
i=1

log 1
1 + exp(−yi〈w, xi〉) ,

= −
n∑
i=1

[log 1− log(1 + exp(−yi〈w, xi〉)],

=
n∑
i=1

log(1 + exp(−yi〈w, xi〉).

19 / 50

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)
Let p and q be two probability distributions (for discrete Z) or probabilitiy
densities with respect to a measure dλ (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and q is defined as

KL(p ‖q) =
∑
z∈Z

p(z) log p(z)
q(z) , or KL(p ‖q) =

∫
z∈Z

p(z) log p(z)
q(z) dλ(z),

(with convention 0 log 0 = 0, and a log a
0 =∞ for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0 ≤ KL(p ‖q) ≤ ∞, and KL(p ‖q) = 0 ⇔ p = q.

However, KL is not a metric.
• it is in general not symmetric, KL(q ‖p) 6= KL(p ‖q),
• it does not fulfill the triangle inequality.

20 / 50

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)
Let p and q be two probability distributions (for discrete Z) or probabilitiy
densities with respect to a measure dλ (for continuous Z).
The Kullbach-Leibler (KL)-divergence between p and q is defined as

KL(p ‖q) =
∑
z∈Z

p(z) log p(z)
q(z) , or KL(p ‖q) =

∫
z∈Z

p(z) log p(z)
q(z) dλ(z),

(with convention 0 log 0 = 0, and a log a
0 =∞ for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0 ≤ KL(p ‖q) ≤ ∞, and KL(p ‖q) = 0 ⇔ p = q.

However, KL is not a metric.
• it is in general not symmetric, KL(q ‖p) 6= KL(p ‖q),
• it does not fulfill the triangle inequality.

20 / 50

Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)
Let p(x, y) be a probability distribution over (x, y) ∈ X × Y and let p̂(y|x) be
an approximation of p(y|x).
We measure the approximation quality by the expected KL-divergence
between p and q over all x ∈ X :

KLexp(p ‖q) = Ex∼p(x){ KL(p(·|x)‖q(·|x)) }

Theorem
The parameter wLR obtained by logistic regression training approximately
minimizes the KL divergence between p̂(y|x;w) and p(y|x).

21 / 50

Proof.
We show how maximimzing the conditional likelihood relates to KLexp:

KLexp(p‖p̂) = Ex∼p(x)
∑
y∈Y

p(y|x) log p(y|x)
p̂(y|x,w)

= E(x,y)∼p(x,y) log p(y|x)︸ ︷︷ ︸
indep. of w

−E(x,y)∼p(x,y) log p̂(y|x,w)

We can’t maximize E(x,y)∼p(x,y) log p̂(y|x,w) directly, because p(x, y) is
unknown. But we can maximimize its empirical estimate based on D:

E(x,y)∼p(x,y) log p̂(y|x,w) ≈
∑

(xi,yi)∈D

log p̂(yi|xi, w)

︸ ︷︷ ︸
log of conditional data likelihood

.

The approximation will get better the more data we have.

22 / 50

Solving Logistic Regression numerically – Optimization I

Theorem
Logistic Regression training,

wLR = argmin
w∈Rd

L(w) for L(w) =
n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)
,

is a C∞-smooth, unconstrained, convex optimization problem.
Proof.
1. it’s an optimization problem,
2. it’s unconstrained,
3. it’s smooth (the objective function is C∞ differentiable),
4. remains to show: the objective function is a convex function.

Since L is smooth, it’s enough to show that its Hessian matrix
(the matrix of 2nd partial derivatives) is everywhere positive definite.

Exercise!

23 / 50

Example plot: LogReg objective for three examples in R2

1.0 0.5 0.0 0.5 1.0
3

2

1

0

1

2

3

1.600

1
.8

0
0

2
.0

0
0

2
.5

0
0

3
.0

0
0

4.000

4
.0

0
0

6.000
8.000

24 / 50

Numeric Optimization

Convex optimization is a well understood field. We can use, e.g., gradient
descent will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search
input ε > 0 tolerance (for stopping criterion)

1: w ← 0
2: repeat
3: v ← −∇w L(w) {descent direction}
4: η ← argminη>0 L(w + ηv) {1D line search}
5: w ← w + ηd
6: until ‖v‖ < ε
output w ∈ Rd learned weight vector

Faster conference from methods that use second-order information, e.g.,
conjugate gradients or (L-)BFGS → convex optimization lecture

25 / 50

Binary classification with a LogReg Models

A discriminative probability model, p̂(y|x), is enough to make decisions:

c(x) = argmax
y∈Y

p̂(y|x) or c(x) = argmin
y∈Y

Eȳ∼p̂(y|x)`(ȳ, y).

For Logistic Regression, this is particularly simple:

Lemma
The LogReg classification rule for 0/1-loss is

c(x) = sign 〈w, x〉.

For a loss function ` =
(
a b
c d

)
the rule is

c`(x) = sign[〈w, x〉+ log c− d
b− a

],

In particular, the decision boundaries is linear (or affine).
Proof. Elementary, since log p̂(+1|x;w)

p(−1|x;w) = 〈w, x〉

26 / 50

Multiclass Logistic Regression

For Y = {1, . . . ,M}, we can do two things:

• Parametrize p̂(y|x; ~w) using M−1 vectors, w1, . . . , wM−1 ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)
1 +

∑M−1
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M − 1,

p̂(M |x,w) = 1
1 +

∑M−1
j=1 exp(〈wj , x〉)

.

• Parametrize p̂(y|x; ~w) using M vectors, w1, . . . , wM ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)∑M
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M,

Second is more popular, since it’s easier to implement and analyze.

Decision boundaries are still piecewise linear, c(x) = argmaxy〈wy, x〉.

27 / 50

Summary: Discriminative Models

Discriminative models treats the input data, x, as fixed and only model the
distribution of the output labels p(y|x).

Discriminative models, in particular LogReg, are popular, because
• they often need less training data than generative models,
• they provide an estimate of the uncertainty of a decision p(c(x)|x),
• training them is often efficient,

e.g. Yahoo trains LogReg models routinely from billions of examples.

But: they also have drawbacks
• often p̂LR(y|x) 6→ p(y|x), even for n→∞,
• they usually are good for prediction, but they do not reflect the actual

mechanism.

Note: there are much more complex discriminative models than LogReg, e.g.
Conditional Random Fields (maybe later).

28 / 50

Maximum Margin Classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Generative classifiers for Gaussian class-conditional densities with shared

covariance matrix
• Logistic Regression
• Perceptron (didn’t introduce yet)

What’s the best linear classifier?

29 / 50

Maximum Margin Classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Generative classifiers for Gaussian class-conditional densities with shared

covariance matrix
• Logistic Regression
• Perceptron (didn’t introduce yet)

What’s the best linear classifier?

29 / 50

Linear classifiers

Definition
Let

F = { f : Rd → {±1} with f(x) = b+ a1x1 + · · ·+ adxd = b+ 〈w, x〉 }

be the set of linear (affine) function from Rd → R.

A classifier g : X → Y is called linear, if it can be written as

g(x) = sign f(x)

for some f ∈ F .

We write G for the set of all linear classifiers.

30 / 50

A linear classifier, g(x) = sign〈w, x〉, with b = 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

31 / 50

A linear classifier g(x) = sign(〈w, x〉+ b), with b > 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

b

32 / 50

Linear classifiers

Definition
We call a classifier, g, correct (for a training set D), if it predicts the correct
labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Definition (Linear Separability)
A training set D is called linearly separable, if it allows a correct linear
classifier (i.e. the classes can be separated by a hyperplane).

33 / 50

Linear classifiers

Definition
We call a classifier, g, correct (for a training set D), if it predicts the correct
labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Definition (Linear Separability)
A training set D is called linearly separable, if it allows a correct linear
classifier (i.e. the classes can be separated by a hyperplane).

33 / 50

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

34 / 50

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

34 / 50

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

34 / 50

An incorrect classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

35 / 50

Linear Classifiers

Definition
The robustness of a classifier g (with respect to D) is the largest amount, ρ, by
which we can perturb the training samples without changing the predictions of
g.

g(xi + ε) = g(xi), for all i = 1, . . . , n.

for any ε ∈ Rd with ‖ε‖ < ρ.

Example

• constant classifier, e.g. c(x) ≡ 1: very robust (ρ =∞),
(but it is not correct, in the sense of the previous definition)

• robustness of the Perceptron: can be arbitrarily small
(see Exercise...)

36 / 50

Robustness, ρ, of a linear classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

37 / 50

Definition (Margin)
Let f(x) = 〈w, x〉+ b define a correct linear classifier.
Then the smallest (Euclidean) distance of any training example from the
decision hyperplane is called the margin of f (with respect to D).

Lemma
We can compute the margin of a linear classifier f = 〈w, x〉+ b as

ρ = mini=1,...,n

∣∣∣∣〈 w

‖w‖
, xi
〉

+ b

∣∣∣∣ .
Proof.
High school maths: distance between a points and a hyperplane in Hessian
normal form.

38 / 50

Margin, ρ, of a linear classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

39 / 50

Theorem
The robustness of a linear classifier function g(x) = sign f(x) with
f(x) = 〈w, x〉+ b is identical to the margin of f .
Proof by Picture

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

margin

region
ρ

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ ρ

40 / 50

Maximum-Margin Classifier

Theorem
Let D be a linearly separable training set. Then the most robust, correct
classifier is given by g(x) = sign〈w∗, x〉+ b∗ where (w∗, b∗) are the solution to

minw∈Rd

1
2‖w‖

2

subject to
yi(〈w, xi〉+ b) ≥ 1, for i = 1, . . . , n.

Remark
• The classifier defined above is call Maximum (Hard) Margin Classifier,

or Hard-Margin Support Vector Machine (SVM)
• It is unique (follows from strictly convex optimization problem).

41 / 50

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i
margin vio

lation

xi

42 / 50

Definition (Maximum Soft-Margin Classifier)
Let D be a training set, not necessarily linearly separable. Let C > 0. Then the
classifier g(x) = sign〈w∗, x〉 where (w∗, b∗) are the solution to

min
w∈Rd,ξ∈Rn

1
2‖w‖

2 + C

n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, for i = 1, . . . , n.
ξi ≥ 0, for i = 1, . . . , n.

is called Maximum (Soft-)Margin Classifier or Linear Support Vector
Machine.

43 / 50

Maximum Soft-Margin Classifier

Theorem
The maximum soft-margin classifier exists and is unique for any C > 0.
Proof. optimization problem is strictly convex

Remark
The constant C > 0 is called regularization parameter.

It balances the wishes for robustness and for correctness
• C → 0: mistakes don’t matter much, emphasis on short w
• C →∞: as few errors as possible, might not be robust

44 / 50

Remark
Sometimes, a soft margin is better even for linearly separable datasets!

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i

Left: small margin, no errors) Right: large margin, but 1 error

45 / 50

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian → polar coordinates

46 / 50

Nonlinear Classifiers
What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian → polar coordinates
46 / 50

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)
Let C > 0. Assume a necessarily linearly separable training set

D = {(x1, y1), . . . xn, yn)} ⊂ X × Y.

Let φ : X → H be a feature map from X into a Hilbert space H.

Then we can form a new training set

Dφ = { (φ(x1), y1), . . . , (φ(xn), yn) } ⊂ H × Y.

The maximum-(soft)-margin linear classifier in H,

g(x) = sign〈w, φ(x)〉H + b,

for w ∈ H and b ∈ R is called max-margin generalized linear classifier.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.

47 / 50

Example (Polar coordinates)
Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → H with X = R2 and H = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in H induces a classifier in X .

48 / 50

Example (Polar coordinates)
Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → H with X = R2 and H = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in H induces a classifier in X .

48 / 50

Other popular feature mappings, φ

Example (d-th degree polynomials)

φ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn, x

2
1, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n

)
Resulting classifier: d-th degree polynomial in x.g(x) = sign f(x) with

f(x) = 〈w, φ(x)〉 =
∑

j
wjφ(x)j =

∑
i
aixi +

∑
ij
bijxixj + . . .

Example (Distance map)
For a set of prototype p1, . . . , pN ∈ H:

φ : ~x 7→
(
e−‖~x−~pi‖2

, . . . , e−‖~x−~pN‖2
)

Classifier: combine weights from close enough prototypes
g(x) = sign〈w, φ(x)〉 = sign

∑n

i=1
aie
−‖~x−~pi‖2

.

49 / 50

Finding the Maximum Margin Classifier numerically – Optimization II

min
w∈Rd,b∈Rξ∈Rn

1
2‖w‖

2 + C

n∑
i=1

ξi

subject to

yi〈w, φ(xi)〉 ≥ 1− ξi, for i = 1, . . . , n,
ξi ≥ 0. for i = 1, . . . , n.

How to solve numerically?
• off-the-shelf Quadratic Program (QP) solver

only for small dimensions and training sets (a few hundred),
• variants of gradient descent,

high dimensional data, large training sets (millions)
• by convex duality,

for very high dimensional data and not so many examples (d� n)

50 / 50

