Nonparametric Discriminative Model

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

Use a *decision tree*. (introduced next)

Decision Trees – a short intro (analysis: Breiman 1980s)

EBERHARD KARLS UNIVERSITÄT

TUBINGEN

Task: decide what to do today

Machine Learning for Robotics

Intelligent Systems Series

Lecture 3

Georg Martius Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

May 8, 2017

book tennis

MAX-PLANCK-CESELLSCHAFT

- follow the decisions until we reach
- use the leaf value as the prediction

Decisions trees ('expert systems') are popular especially for non-experts:

• easy to use, and interpretable.

How to automatically build a decision tree

Given: training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}.$

Convention:

- each node contains a subset of examples,
- its label is the majority label of the examples in this node (any of the majority labels, if there's a tie)

Decision Tree – Training

initialize: put all examples in root node mark root as active

repeat

pick active node with largest number of misclassified examples mark the node as *inactive*

for each attributes, check error rate of splitting along this attribute keep the split with smallest error, if any, and mark children as active until no more active nodes.

1/50

Decision Tree – Classification input decision tree, example *x* assign *x* to root node **while** *x* not in leaf node **do**

output label of the leaf that x is in

end while

Decision Trees Example - Training phase

Training data: Zoe (our customer) selected whom she would like to date from a list of profiles

<i>X</i>						
person	eyes	handsome	height	sex	soccer	date?
Apu	blue	yes	tall	М	no	yes
Bernice	brown	yes	short	F	no	no
Carl	blue	no	tall	M	no	yes
Doris	green	yes	short	F	no	no
Edna	brown	no	short	F	yes	no
Prof. Frink	brown	yes	tall	М	yes	no
Gil	blue	no	tall	M	yes	no
Homer	green	yes	short	M	no	yes
ltchy	brown	no	short	М	yes	yes

5 / 50

6 / 50

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

move x to child according to the test in node

 $\textit{root} = \{ (A,y), (B,n), (C,y), (D,n), (E,n), (F,n), (G,n), (H,y), (I,y) \}$

For each feature, check the classification accuracy of this single feature:

Total accuracy eyes: 6/9

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

$$root = \{ (A,y), (B,n), (C,y), (D,n), (E,n), (F,n), (G,n), (H,y), (I,y) \}$$

For each feature, check the classification accuracy of this single feature:

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

 $root = \{ (A,y), (B,n), (C,y), (D,n), (E,n), (F,n), (G,n), (H,y), (I,y) \}$

For each feature, check the classification accuracy of this single feature:

feature	accuracies	\rightarrow	total
eyes	blue: $(2/3)$, brown: $(3/4)$, green: (3)	$1/2) \rightarrow$	total: (6/9)
handsome	yes: (3/5), no: (2/4)	\rightarrow	total: (5/9)
height	tall: (2/4), short: (3/5)	\rightarrow	total: (5/9)
sex	male: (4/6), female: (3/3)	\rightarrow	total: (7/9)
soccer	yes: (3/4), no: (3/6)	\rightarrow	total: (6/9)

Best feature: sex.

Decision Trees Example - Training phase

Step 1 result: first split ist along sex feature

Right node: no mistakes, no more splits Left node: run checks again for remaining data

9 / 50

Step 2:

eyes	handsome	height	sex	soccer	date?
blue	yes	tall	male	no	yes
blue	no	tall	male	no	yes
brown	yes	tall	male	yes	no
blue	no	tall	male	yes	no
green	yes	short	male	no	yes
brown	no	short	male	yes	yes
	eyes blue blue brown blue green brown	eyes handsome blue yes blue no brown yes blue no green yes brown no	eyeshandsomeheightblueyestallbluenotallbrownyestallbluenotallgreenyesshortbrownnoshort	eyeshandsomeheightsexblueyestallmalebluenotallmalebrownyestallmalebluenotallmalegreenyesshortmalebrownnoshortmale	eyeshandsomeheightsexsoccerblueyestallmalenobluenotallmalenobrownyestallmaleyesbluenotallmaleyesgreenyesshortmalenobrownnoshortmaleyes

feature	accuracies	\rightarrow	total
eyes	blue: $(2/3)$, brown: $(1/2)$, green:	(1/1) ightarrow	total: (4/6)
handsome	yes: (2/3), no: (2/3)	\rightarrow	total: (4/6)
height	tall: $(2/4)$, short: $(2/2)$	\rightarrow	total: (4/6)
sex	male: (4/6)	\rightarrow	total: (4/6)
soccer	yes: (2/3), no: (3/3)	\rightarrow	total: (5/6)

Best feature: soccer.

Decision Trees Example - Training phase

Step 2 result: second split ist along soccer feature

Left node: no mistakes, no more splits Right node: run checks again for remaining data

Decision Trees Example - Training phase

Step 3 result: third split is along height feature

Left node: no mistakes, no more splits Right node: no mistakes, no more splits

Decision Trees Example - Training phase

Step 3 result: third split is along height feature

Left node: no mistakes, no more splits Right node: no mistakes, no more splits

 \rightarrow Decision tree learning complete.

13 / 50

13 / 50

Decision Trees Example - How good is this classifier?

On all training examples it is correct by construction! What if we check on new data of the same kind?

person	eyes	handsome	height	sex	soccer	date?	
Jimbo	blue	no	tall	М	no	yes	
Krusty	green	yes	short	М	yes	no	
Lisa	blue	yes	tall	F	no	no	
Moe	brown	no	short	М	no	no	
Ned	brown	yes	short	M	no	yes	
Quimby	blue	no	tall	М	no	yes	

Decision Trees Example - How good is this classifier?

On all training examples it is correct by construction! What if we check on new data of the same kind?

person	eyes	handsome	height	sex	soccer	date?	tree
Jimbo	blue	no	tall	М	no	yes	yes
Krusty	green	yes	short	M	yes	no	yes
Lisa	blue	yes	tall	F	no	no	no
Moe	brown	no	short	М	no	no	yes
Ned	brown	yes	short	M	no	yes	yes
Quimby	blue	no	tall	М	no	yes	yes

2 mistakes in 6, hm...

Observation

Decision trees don't generalize very well.

Random forest

combines many trees, with random set of splitting features

• Categorial data can often be handled nicely by a tree.

- For continuous data, $\mathcal{X} = \mathbb{R}^d$, one typically uses splits by comparing any coordinate by a threshold: $[x_i \ge \theta]$?
- Finding a split consists of checking all i = 1,...,d and all (reasonable) thresholds, e.g. all x¹_i,...,xⁿ_i
- If *d* is large, and all dimension are roughly of equal importance (e.g. time series), this is tedious, and the resulting tree might not be good.

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a decision tree:

- training: build a tree
- prediction: for new example x, find its leaf
- output $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - ▶ n is the number of examples in the leaf,
 - n_y is the number of example of label y in the leaf.

15 / 50

Back to: Nonparametric Discriminative Model

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a **decision tree**:

- training: build a tree
- prediction: for new example x, find its leaf
- output $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - n is the number of examples in the leaf,
 - $\blacktriangleright \ n_y$ is the number of example of label y in the leaf.

Note: prediction rule

 $c(x) = \operatorname*{argmax}_{y} \hat{p}(y|x)$

is predicts the most frequent label in each leaf.

Parametric Discriminative Model: Logistic Regression

Setting. We assume $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model) Modeling

$$\hat{p}(y|x;w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)},$$

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.

Setting. We assume $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model) Modeling

$$\hat{p}(y|x;w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)},$$

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.

Lemma

 $\hat{p}(y|x;w)$ is a well defined probability density w.r.t. y for any $w \in \mathbb{R}^d$. **Proof.** elementary. How to set the weight vector w (based on \mathcal{D})

Logistic Regression Training

Given a training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$, logistic regression training sets the free parameter vector as

$$w_{LR} = \operatorname*{argmin}_{w \in \mathbb{R}^d} \sum_{i=1}^n \log \left(1 + \exp(-y^i \langle w, x^i \rangle) \right)$$

Lemma (Conditional Likelihood Maximization)

 w_{LR} from Logistic Regression training maximizes the conditional data likelihood w.r.t. the LogReg model,

$$w_{LR} = \operatorname{argmax}_{w \in \mathbb{R}^d} \hat{p}(y^1, \dots, y^n | x^1, \dots, x^n, w)$$

18 / 50

Proof.

Maximizing

$$\hat{p}(\mathcal{D}^Y|\mathcal{D}^X, w) \stackrel{i.i.d.}{=} \prod_{i=1}^n \hat{p}(y^i|x^i, w)$$

is equivalent to minimizing its negative logarithm

$$-\log \hat{p}(\mathcal{D}^{Y}|\mathcal{D}^{X}, w) = -\log \prod_{i=1}^{n} \hat{p}(y^{i}|x^{i}, w) = -\sum_{i=1}^{n} \log \hat{p}(y^{i}|x^{i}, w)$$
$$= -\sum_{i=1}^{n} \log \frac{1}{1 + \exp(-y^{i}\langle w, x^{i} \rangle)},$$
$$= -\sum_{i=1}^{n} [\log 1 - \log(1 + \exp(-y^{i}\langle w, x^{i} \rangle)],$$
$$= \sum_{i=1}^{n} \log(1 + \exp(-y^{i}\langle w, x^{i} \rangle)).$$

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete Z) or probability densities with respect to a measure $d\lambda$ (for continuous Z). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

$$\operatorname{KL}(p \| q) = \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}, \quad \text{or} \quad \operatorname{KL}(p \| q) = \int_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)} \, \mathrm{d}\lambda(\mathsf{z}),$$

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for a > 0).

19 / 50

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete \mathcal{Z}) or probability densities with respect to a measure $d\lambda$ (for continuous \mathcal{Z}). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

$$\operatorname{KL}(p \| q) = \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}, \quad \text{or} \quad \operatorname{KL}(p \| q) = \int_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)} \, \mathrm{d}\lambda(\mathbf{z}),$$

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for a > 0).

 KL is a similarity measure between probability distributions. It fulfills

 $0 \le KL(p || q) \le \infty$, and $KL(p || q) = 0 \Leftrightarrow p = q$.

However, KL is not a metric.

• it is in general not symmetric, $KL(q || p) \neq KL(p || q)$,

• it does not fulfill the triangle inequality.

20 / 50

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(x, y) be a probability distribution over $(x, y) \in \mathcal{X} \times \mathcal{Y}$ and let $\hat{p}(y|x)$ be an approximation of p(y|x). We measure the approximation quality by the **expected KL-divergence**

between p and q over all $x \in \mathcal{X}$:

 $\mathrm{KL}_{exp}(p || q) = \mathbb{E}_{x \sim p(x)} \{ \mathrm{KL}(p(\cdot|x) || q(\cdot|x)) \}$

Theorem

The parameter w_{LR} obtained by logistic regression training approximately minimizes the KL divergence between $\hat{p}(y|x;w)$ and p(y|x).

21 / 50

Proof.

We show how maximimzing the conditional likelihood relates to KL_{exp} :

$$\begin{split} \mathrm{KL}_{\exp}(p \| \hat{p}) &= \mathbb{E}_{x \sim p(x)} \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{\hat{p}(y|x, w)} \\ &= \underbrace{\mathbb{E}_{(x,y) \sim p(x,y)} \log p(y|x)}_{\text{indep. of } w} - \mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x, w) \end{split}$$

We can't maximize $\mathbb{E}_{(x,y)\sim p(x,y)}\log \hat{p}(y|x,w)$ directly, because p(x,y) is unknown. But we can maximize its empirical estimate based on \mathcal{D} :

$$\mathbb{E}_{(x,y)\sim p(x,y)}\log \hat{p}(y|x,w) \approx \underbrace{\sum_{(x^i,y^i)\in\mathcal{D}}\log \hat{p}(y^i|x^i,w)}_{\text{log of conditional data likelihood}} \,.$$

 \log of conditional data likelihood

The approximation will get better the more data we have.

Solving Logistic Regression numerically – Optimization I

Theorem

Logistic Regression training,

$$w_{LR} = \operatorname*{argmin}_{w \in \mathbb{R}^d} \mathcal{L}(w) \quad \textit{for} \quad \mathcal{L}(w) = \sum_{i=1}^n \log\left(1 + \exp(-y^i \langle w, x^i \rangle)\right),$$

is a $C^\infty\mbox{-smooth, unconstrained, convex optimization problem.}$

Proof.

- 1. it's an optimization problem,
- 2. it's unconstrained,
- **3.** it's smooth (the objective function is C^{∞} differentiable),
- remains to show: the objective function is a *convex* function. Since L is smooth, it's enough to show that its *Hessian matrix* (the matrix of 2nd partial derivatives) is everywhere *positive definite*.

Exercise!

 \square

Numeric Optimization

Convex optimization is a well understood field. We can use, e.g., *gradient descent* will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search

 $\begin{array}{ll} \mbox{input} & \epsilon > 0 \mbox{ tolerance (for stopping criterion)} \\ 1: & w \leftarrow 0 \\ 2: \mbox{ repeat} \\ 3: & v \leftarrow -\nabla_w \mbox{ } \mathcal{L}(w) & \{\mbox{descent direction}\} \\ 4: & \eta \leftarrow \mbox{argmin}_{\eta > 0} \mbox{ } \mathcal{L}(w + \eta v) & \{\mbox{1D line search}\} \\ 5: & w \leftarrow w + \eta d \\ 6: \mbox{ until } \|v\| < \epsilon \\ \mbox{output } w \in \mathbb{R}^d \mbox{ learned weight vector} \end{array}$

Faster conference from methods that use second-order information, e.g., conjugate gradients or (L-)BFGS \rightarrow convex optimization lecture

25 / 50

Binary classification with a LogReg Models

A discriminative probability model, $\hat{p}(y|x)$, is enough to make decisions:

$$c(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} \hat{p}(y|x) \quad \text{or} \quad c(x) = \operatorname*{argmin}_{y \in \mathcal{Y}} \mathbb{E}_{\bar{y} \sim \hat{p}(y|x)} \ell(\bar{y}, y).$$

For Logistic Regression, this is particularly simple:

Lemma

The LogReg classification rule for 0/1-loss is

$$c(x) = \operatorname{sign} \langle w, x \rangle.$$

For a loss function $\ell = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ the rule is
 $c_{\ell}(x) = \operatorname{sign}[\langle w, x \rangle + \log \frac{c-d}{b-a}]$

In particular, the decision boundaries is linear (or affine). **Proof.** Elementary, since $\log \frac{\hat{p}(+1|x;w)}{p(-1|x;w)} = \langle w, x \rangle$

Multiclass Logistic Regression

For $\mathcal{Y} = \{1, \dots, M\}$, we can do two things:

• Parametrize $\hat{p}(y|x; \vec{w})$ using M-1 vectors, $w_1, \ldots, w_{M-1} \in \mathbb{R}^d$, as

$$\hat{p}(y|x,w) = \frac{\exp(\langle w_y, x \rangle)}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)} \quad \text{for } y = 1, \dots, M-1,$$
$$\hat{p}(M|x,w) = \frac{1}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)}.$$

• Parametrize $\hat{p}(y|x; \vec{w})$ using M vectors, $w_1, \ldots, w_M \in \mathbb{R}^d$, as

$$\hat{p}(y|x,w) = \frac{\exp(\langle w_y, x \rangle)}{\sum_{j=1}^{M} \exp(\langle w_j, x \rangle)} \quad \text{for } y = 1, \dots, M,$$

Second is more popular, since it's easier to implement and analyze. Decision boundaries are still *piecewise linear*, $c(x) = \operatorname{argmax}_y \langle w_y, x \rangle$.

Summary: Discriminative Models

Discriminative models treats the input data, $x_{\rm r}$ as fixed and only model the distribution of the output labels p(y|x).

Discriminative models, in particular LogReg, are popular, because

- they often need less training data than generative models,
- they provide an estimate of the uncertainty of a decision p(c(x)|x),
- training them is often efficient,
 - e.g. Yahoo trains LogReg models routinely from billions of examples.

But: they also have drawbacks

- often $\hat{p}_{LR}(y|x)\not\rightarrow p(y|x),$ even for $n\rightarrow\infty,$
- they usually are good for *prediction*, but they do not reflect the actual *mechanism*.

Note: there are much more complex discriminative models than LogReg, e.g. Conditional Random Fields (maybe later).

28 / 50

Maximum Margin Classifiers

Let's use \mathcal{D} to estimate a classifier $c: \mathcal{X} \to \mathcal{Y}$ directly.

For a start, we fix

• $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\},\$

• $\mathcal{Y} = \{+1, -1\},\$

• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had *linear* decision boundaries:

- Generative classifiers for Gaussian class-conditional densities with shared covariance matrix
- Logistic Regression
- Perceptron (didn't introduce yet)

What's the **best linear classifier**?

Maximum Margin Classifiers

Let's use \mathcal{D} to estimate a classifier $c: \mathcal{X} \to \mathcal{Y}$ directly.

Linear classifiers

Definition

Let

 $\mathcal{F} = \{ f : \mathbb{R}^d \to \{\pm 1\} \text{ with } f(x) = b + a_1 x_1 + \dots + a_d x_d = b + \langle w, x \rangle \}$

be the set of linear (affine) function from $\mathbb{R}^d \to \mathbb{R}$.

A classifier $g: \mathcal{X} \to \mathcal{Y}$ is called **linear**, if it can be written as

 $g(x) = \operatorname{sign} f(x)$

for some $f \in \mathcal{F}$.

We write ${\mathcal G}$ for the set of all linear classifiers.

A linear classifier, $g(x) = \operatorname{sign}\langle w, x \rangle$, with b = 0

31 / 50

Linear classifiers

Definition

We call a classifier, g, **correct** (for a training set D), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, ..., n$.

A linear classifier $g(x) = \operatorname{sign}(\langle w, x \rangle + b)$, with b > 0

Linear classifiers

Definition

We call a classifier, g, **correct** (for a training set D), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, ..., n$.

Definition (Linear Separability)

A training set \mathcal{D} is called **linearly separable**, if it allows a correct linear classifier (i.e. the classes can be separated by a hyperplane).

A linearly separable dataset and a correct classifier

A linearly separable dataset and a correct classifier

A linearly separable dataset and a correct classifier

An incorrect classifier

Definition

The **robustness** of a classifier g (with respect to \mathcal{D}) is the largest amount, ρ , by which we can perturb the training samples without changing the predictions of g.

 $g(x^i + \epsilon) = g(x^i),$ for all $i = 1, \dots, n$.

for any $\epsilon \in \mathbb{R}^d$ with $\|\epsilon\| < \rho$.

Example

- constant classifier, e.g. $c(x) \equiv 1$: very robust $(\rho = \infty)$, (but it is not *correct*, in the sense of the previous definition)
- robustness of the *Perceptron*: can be arbitrarily small (see Exercise...)

Robustness, ρ , of a linear classifier

36 / 50

Definition (Margin)

Let $f(x) = \langle w, x \rangle + b$ define a *correct* linear classifier. Then the smallest (Euclidean) distance of any training example from the decision hyperplane is called the **margin** of f (with respect to \mathcal{D}).

Lemma

We can compute the margin of a linear classifier $f = \langle w, x \rangle + b$ as

$$\rho = \min_{i=1,\dots,n} \left| \left\langle \frac{w}{\|w\|}, x^i \right\rangle + b \right|.$$

Proof.

High school maths: distance between a points and a hyperplane in *Hessian* normal form.

Margin, ρ , of a linear classifier

Maximum-Margin Classifier

Theorem

The robustness of a linear classifier function $g(x) = \operatorname{sign} f(x)$ with $f(x) = \langle w, x \rangle + b$ is identical to the margin of f.

Proof by Picture

Theorem

Let \mathcal{D} be a linearly separable training set. Then the **most robust, correct** classifier is given by $g(x) = \operatorname{sign} \langle w^*, x \rangle + b^*$ where (w^*, b^*) are the solution to

$$\mathbf{min}_{w\in\mathbb{R}^d}\ \frac{1}{2}\|w\|^2$$

subject to

$$y^i(\langle w, x^i \rangle + b) \ge 1$$
, for $i = 1, \dots, n$.

Remark

• The classifier defined above is call Maximum (Hard) Margin Classifier, or Hard-Margin Support Vector Machine (SVM)

• It is unique (follows from strictly convex optimization problem).

40 / 50

41 / 50

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

Definition (Maximum Soft-Margin Classifier)

Let \mathcal{D} be a training set, not necessarily linearly separable. Let C > 0. Then the classifier $g(x) = \operatorname{sign}\langle w^*, x \rangle$ where (w^*, b^*) are the solution to

$$\min_{w\in\mathbb{R}^d,\xi\in\mathbb{R}^n} \ \frac{1}{2}\|w\|^2 + C\sum_{i=1}^n\xi^i$$

subject to

$$\begin{split} y^i(\langle w, x^i \rangle + b) &\geq 1 - \xi^i, \quad \text{for } i = 1, \dots, n. \\ \xi^i &\geq 0, \quad \text{for } i = 1, \dots, n. \end{split}$$

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.

Maximum Soft-Margin Classifier

Theorem

The maximum soft-margin classifier exists and is unique for any C > 0. **Proof.** optimization problem is strictly convex

Remark

The constant C > 0 is called **regularization** parameter.

It balances the wishes for robustness and for correctness

- $C \rightarrow 0$: mistakes don't matter much, emphasis on short w
- $C \rightarrow \infty$: as few errors as possible, might not be robust

Remark

Sometimes, a soft margin is better even for linearly separable datasets!

44 / 50

45 / 50

Nonlinear Classifiers

-0.5

 $-1.5_{-2.0}$

0.0

-1.0

Nonlinear Classifiers

Change the data representation, e.g. Cartesian \rightarrow polar coordinates

x

2.0

1.0

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a necessarily linearly separable training set

 $\mathcal{D} = \{(x^1, y^1), \dots x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}.$

Let $\phi: \mathcal{X} \to \mathcal{H}$ be a feature map from \mathcal{X} into a Hilbert space \mathcal{H} .

Then we can form a new training set

$$\mathcal{D}^{\phi} = \{ (\phi(x^1), y^1), \ldots, (\phi(x^n), y^n) \} \subset \mathcal{H} \times \mathcal{Y}.$$

The maximum-(soft)-margin linear classifier in \mathcal{H} ,

$$g(x) = \operatorname{sign} \langle w, \phi(x) \rangle_{\mathcal{H}} + b,$$

for $w \in \mathcal{H}$ and $b \in \mathbb{R}$ is called **max-margin generalized linear classifier**. It is still *linear* w.r.t w, but (in general) nonlinear with respect to x.

 $47 \, / \, 50$

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi: \mathcal{X} \to \mathcal{H}$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{H} = \mathbb{R}^2$

$$\phi(x,y)=(\sqrt{x^2+y^2},\,\arctan\frac{y}{x})\qquad \bigl(\text{and }\phi(0,0)=(0,0)\bigr)$$

48 / 50

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi: \mathcal{X} \to \mathcal{H}$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{H} = \mathbb{R}^2$

$$\phi(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$$
 (and $\phi(0,0) = (0,0)$)

Any classifier in \mathcal{H} induces a classifier in \mathcal{X} .

Other popular feature mappings, ϕ

Example (*d*-th degree polynomials)

$$\phi: (x_1, \dots, x_n) \mapsto (1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, \dots, x_1^d, \dots, x_n^d)$$

Resulting classifier: *d*-th degree polynomial in $x.g(x) = \text{sign } f(x)$ with

$f(x) = \langle w, \phi(x) \rangle = \sum_{j} w_{j} \phi(x)_{j} = \sum_{i} a_{i} x_{i} + \sum_{ij} b_{ij} x_{i} x_{j} + \dots$

Example (Distance map)

For a set of prototype $p_1, \ldots, p_N \in \mathcal{H}$:

$$\phi: \vec{x} \mapsto \left(e^{-\|\vec{x} - \vec{p}_i\|^2}, \dots, e^{-\|\vec{x} - \vec{p}_N\|^2} \right)$$

Classifier: combine weights from close enough prototypes $g(x) = \operatorname{sign} \langle w, \phi(x) \rangle = \operatorname{sign} \sum_{i=1}^{n} a_i e^{-\|\vec{x} - \vec{p}_i\|^2}.$

$$\min_{w\in\mathbb{R}^d,b\in\mathbb{R}\xi\in\mathbb{R}^n} \ \frac{1}{2}\|w\|^2 + C\sum_{i=1}^n\xi^i$$

subject to

$$\begin{split} y^i \langle w, \phi(x^i) \rangle &\geq 1-\xi^i, \quad \text{for } i=1,\ldots,n, \\ \xi^i &\geq 0. \quad \text{for } i=1,\ldots,n. \end{split}$$

How to solve numerically?

- off-the-shelf Quadratic Program (QP) solver only for small dimensions and training sets (a few hundred),
- variants of gradient descent, high dimensional data, large training sets (millions)
- by convex duality,

for very high dimensional data and not so many examples $(d \gg n)$