Machine Learning for Robotics Intelligent Systems Series Lecture 4

Georg Martius Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

May 15, 2017

1 / 36

Clustering

Given: data

$$
X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d
$$

Clustering – Transductive

Task: partition the point in *X* into **clusters** S_1, \ldots, S_K .

Idea: elements within a cluster are similar to each other, elements in different clusters are dissimilar

Clustering – Inductive

Task: define a partitioning function $f : \mathbb{R}^d \to \{1, \ldots, K\}$ and set $S_k = \{ x \in X : f(x) = k \}.$

(allows assigning a cluster label also to new points, $x \neq X$: "out-of-sample extension")

Unsupervised Learning Clustering

2 / 36

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering

Clustering is fundamentally problematic and subjective

Clustering is fundamentally problematic and subjective

4 / 36

Clustering – Linkage-based

General framework to create a **hierarchical partitioning**

- \bullet initialize: each point x_i is it's own cluster, $S_i = \{i\}$
- repeat
	- \blacktriangleright take two most similar clusters and merge into a single new cluster
- until *K* clusters left

Open question: how to define similarity between clusters?

Clustering – Linkage-based

Given: similarity between individual points $d(x_i, x_j)$

Single linkage clustering Smallest distance between any cluster elements

 $d(S, S') = \min_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)$

Average linkage clustering

Average distance between all cluster elements

$$
d(S, S') = \frac{1}{|S||S'|} \sum_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)
$$

Max linkage clustering

Largest distance between any cluster elements

 $d(S, S') = \max_{i \in S, j \in S'} d(x_i, x_j)$

Theorem

The edges of a single linkage clustering forms a minimal spanning tree.

7 / 36

Clustering – centroid-based clustering

Let $c_1, \ldots, c_K \in \mathbb{R}^d$ be K cluster centroids. Then a distance-based clustering function, $c: \mathcal{X} \to \{1, \ldots, K\}$, is given by the assignment

 $f(x) = \operatorname*{argmin}_{k=1,\ldots,K} \|x - c_i\|$ (arbitrary tie break)

(similar to *K*-means with training set $\{(c_1, 1), \ldots, (c_K, K)\}\)$

Show Jupyter notebook

Clustering – centroid-based clustering

*K***-means objective**

Find $c_1, \ldots, c_K \in \mathbb{R}^d$ by minimizing the total Euclidean error

$$
\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2
$$

*K***-means objective**

Find $c_1, \ldots, c_K \in \mathbb{R}^d$ by minimizing the total Euclidean error

$$
\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2
$$

Lloyd's algorithm

- Initialize c_1, \ldots, c_K (random subset of X , or smarter)
- repeat

 \blacktriangleright set $S_k = \{i : f(x_i) = k\}$ (current assignment) ▶ $c_k = \frac{1}{|S_k|} \sum_{i \in S_k}$ *(mean of points in cluster)*

• until no more changes to *S^k*

Demo: http://shabal.in/visuals/kmeans/6.html

Alternatives:

- *k*-mediods: like *k*-means, but centroids must be datapoints update step chooses mediod of cluster instead of mean
- *k*-medians: like *k*-means, but minimize $\sum_{i=1}^{m} ||x_i c_{f(x_i)}||$ update step chooses median of each coordinate with each cluster

10 / 36

Clustering – graph-based clustering

For x_1, \ldots, x_m form a graph $G = (V, E)$ with vertex set $V = \{1, \ldots, m\}$ and edge set *E*. Each **partitioning of the graph defines a clustering** of the original dataset.

Choice of edge set

-nearest neighbor graph

$$
E = \{(i, j) \subset V \times V : ||x_i - x_j|| < \epsilon\}
$$

*k***-nearest neighbor graph**

E = { (i, j) ⊂ *V* × *V* : *x*_{*i*}</sub> is a *k*-nearest neighbor of *x*^{*j*} }

Weighted graph

Fully connected, but define edge weights $w_{ij} = \exp(-\lambda ||x_i - x_j||^2)$.

Example: Graph-based Clustering

Data set

Example: Graph-based Clustering

Neighborhood Graph

13 / 36

Example: Graph-based Clustering

Min Cut: biased towards small clusters

13 / 36

Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering

- Input: weight matrix $W \in \mathbb{R}^{m \times m}$
- compute graph Laplacian $L = W D$, for $D = \text{diag}(d_1, \ldots, d_m)$ with $d_i = \sum_j w_{ij}$.
- let *v* ∈ R *^m* be the eigenvector of *L* corresponding to the second smallest eigenvalue (the smallest is 0, since *L* is singular)
- assign x_i to cluster 1 if $v_i \geq 0$ and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest remaining cluster.

Normalized Cut: balanced weight of cut edges and volume of clusters

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance *d* and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of *d*, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d , iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Scale-Invariance For any distance *d* and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of *d*, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d , iff for any i,j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m \geq 2$, there is no clustering function *f* that satisfies all three axioms at the same time.

15 / 36

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance *d* and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let *d* and *d'* be two distance functions. If $f(d) = \Gamma$, and *d'* is a Γ -transform of *d*, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d , iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m > 2$, there is no clustering function *f* that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)

Unsupervised Learning Dimensionality Reduction

Given: data

$$
X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d
$$

Dimensionality Reduction – Transductive Task: Find a lower-dimensional representation

$$
Y = \{y^1, \dots, y^N\} \subset \mathbb{R}^n
$$

with $n \ll d$, such that Y "represents X well"

Dimensionality Reduction – Inductive

Task: find a function $\phi: \mathbb{R}^d \to \mathbb{R}^n$ and set $y_i = \phi(x_i)$ (allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Linear Dimensionality Reduction

Choice 1: ϕ : $\mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a
$$
\psi : \mathbb{R}^n \to \mathbb{R}^d
$$
 such that
$$
\sum_{i=1}^N \|x_i - \psi(y_i)\|^2
$$
 is small.

17 / 36

Linear Dimensionality Reduction

Choice 1: ϕ : $\mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a $\psi: \mathbb{R}^n \to \mathbb{R}^d$ such that $\sum_{i=1}^N \|x_i - \psi(y_i)\|^2$ is small.

Principal Component Analysis

Given $X = \{x^1, \ldots, x^N\} \subset \mathbb{R}^d$, find function $\phi(x) = Wx$ and $\psi(y) = Uy$ by solving

$$
\min_{\substack{U \in \mathbb{R}^{n \times d} \\ W \in \mathbb{R}^{d \times n}}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2
$$

Principal Component Analysis (PCA)

$$
U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2 \tag{PCA}
$$

Lemma

If *U, W* are minimizers of the above PCA problem, then the column of *U* are orthogonal, and $W = U^\top$.

Principal Component Analysis (PCA)

$U, W = \mathop{\mathbf{argmin}}\limits_{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}$ $\sum_{i=1}^{N} ||x_i - UWx_i||^2$ *i*=1 (PCA)

Lemma

If *U, W* are minimizers of the above PCA problem, then the column of *U* are orthogonal, and $W = U^{\top}$.

Theorem

Let $C = \sum_{i=1}^{N} x_i x_i^\top$ and let u_1, \ldots, u_n be n eigenvectors of A that correspond to the largest n eigenvalues of C . Then $U = \big(u_1 | u_2 | \cdots | u_n\big)$ and $W = U^\top$ are minimizers of the PCA problem.

- *C* has orthogonal eigenvectors, since it is symmetric positive definite.
- *U* can also be obtained by singular value decomposition, $X = USV$.

Principal Component Analysis (PCA)

$$
U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2 \tag{PCA}
$$

Lemma

If *U, W* are minimizers of the above PCA problem, then the column of *U* are orthogonal, and $W = U^{\top}$.

Theorem

Let $C = \sum_{i=1}^{N} x_i x_i^\top$ and let u_1, \ldots, u_n be n eigenvectors of A that correspond to the largest n eigenvalues of C . Then $U = \big(u_1 | u_2 | \cdots | u_n\big)$ and $W = U^\top$ are minimizers of the PCA problem.

• *C* has orthogonal eigenvectors, since it is symmetric positive definite.

• *U* can also be obtained by singular value decomposition, $X = USV$.

Typically data is zero-meaned before: $x'_i = x_i - \frac{1}{N}\sum_{j=1}^N x_j$ and thus C is Covariance matrix. (Affine PCA)

19 / 36

Principal Component Analysis – Visualization

Data

Principal Component Analysis – Visualization

PCA

Principal Component Analysis – Visualization

Projected onto first component

Principal Component Analysis – Visualization

Reconstructed from first component

Principal Component Analysis – Alternative Views

There's (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:

- find subspace such that projecting to it orthogonally results in the **smallest reconstruction error**
- find subspace such that projecting to it orthogonally results **preserves most of the data variance**

Principal Component Analysis – as Variance maximization projection Goal:

find direction $u_1 \in \mathbb{R}^d$ where the data has largest variance Projection: *u* > ¹ *xⁱ* . **Variance in projected space:**

$$
\frac{1}{N}\sum_{i=1}^N (u_1^\top x_i - u_1^\top \bar{x}) = u^\top S u
$$

with
$$
S = \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T
$$
 (Covariance matrix).

Principal Component Analysis – as Variance maximization projection Goal:

find direction $u_1 \in \mathbb{R}^d$ where the data has largest variance Projection: *u* > ¹ *xⁱ* . **Variance in projected space:**

$$
\frac{1}{N}\sum_{i=1}^N (u_1^\top x_i - u_1^\top \bar{x}) = u^\top S u
$$

with $S = \sum_{i=1}^{N}(x_i - \bar{x})(x_i - \bar{x})^T$ (Covariance matrix). Maximize with constraint $u^{\top}u = 1$:

$$
u_1 = \operatorname*{argmax}_{u} u^{\top} S u + \lambda (1 - u^{\top} u)
$$

Derivative w.r.t. $u: Su = \lambda u$ (Eigenvalue problem) $\textsf{Variance is given by: } u^\top S u = \lambda \text{ (use } u^\top u = 1\text{)}$

The Eigenvector corresponding to the largest Eigenvalue is the direction of largest projected variance.

All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

22 / 36

Principal Component Analysis – Applications

Data Visualization

If the original data is high-dimensional, use PCA with $n = 2$ or $n = 3$ to obtain low-dimensional representation that can be visualized.

Data Compression

If the original data is high-dimensional, use PCA to obtain a lower-dimensional representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising

If the original data is noisy, apply PCA and reconstruction to obtain a less noisy representation.

n depends on noise level if known, otherwise as for compression.

23 / 36

Canonical Correlation Analysis (CCA) [Hotelling, 1936]

Given: paired data

$$
X_1=\{x_1^1,\ldots,x_1^N\}\subset\mathbb{R}^d \qquad X_2=\{x_2^1,\ldots,x_2^N\}\subset\mathbb{R}^{d'}
$$

for example (after some preprocessing):

- DNA expression and gene expression
- *images* and *text captions*.

Canonical Correlation Analysis (CCA)

Find projections $\phi_1(x_1) = U_1x_1$ and $\phi_2(x_2) = U_2x_2$ with $U_1 \in \mathbb{R}^{d \times n}$ and $U_2 \in \mathbb{R}^{d' \times n}$ such that after projection X_1 and X_2 are **maximally correlated**.

Canonical Correlation Analysis (CCA)

One dimension: find directions $u_1 \in \mathbb{R}^d$, $u_2 \in \mathbb{R}^{d'}$, such that

 $\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \text{corr}(u_1^{\top} X_1, u_2^{\top} X_2)$ *.*

With
$$
C_{11} = \text{cov}(X_1, X_1)
$$
, $C_{22} = \text{cov}(X_2, X_2)$ and $C_{12} = \text{cov}(X_1, X_2)$,

$$
\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \frac{u_1^{\top} C_{12} u_2}{\sqrt{u_1^{\top} C_{11} u_1} \sqrt{u_2^{\top} C_{22} u_2}}
$$

Find u_1, u_2 by solving **generalized eigenvalue problem** for maximal λ :

$$
\begin{pmatrix} \mathbf{0} & C_{12} \\ C_{12}^\top & \mathbf{0} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & \mathbf{0} \\ \mathbf{0} & C_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}
$$

Example: Canonical Correlation Analysis for fMRI Data

26 / 36

Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples $x_i \in \mathbb{R}^d$, PCA finds the directions of maximal covariance. Assume $\sum_i x_i = \mathbf{0}$ (e.g. by first subtracting the mean).

• The PCA directions u_1, \ldots, u_n are the eigenvectors of the covariance matrix

$$
C = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\top}
$$

sorted by their eigenvalues.

• We can express
$$
x_i
$$
 in PCA-space by $P(x_i) = \sum_{j=1}^n \langle x_i, u_j \rangle u_j$.

• Lower-dim. coordinate mapping: *xⁱ* 7→ $\sqrt{ }$ $\overline{}$ $\langle x_i, u_1 \rangle$ $\langle x_i, u_2 \rangle$ *. . .* $\langle x_i, u_n \rangle$ \setminus $\Big\} \in \mathbb{R}^n$

Kernel-PCA

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$. **Do PCA in the (implicit) feature space** \mathcal{H} .

• The kernel-PCA directions u_1, \ldots, u_n are the eigenvectors of the covariance operator

$$
C = \frac{1}{N} \sum_{i=1}^{N} \phi(x_i) \phi(x_i)^\top
$$

sorted by their eigenvalue.

• Lower-dim. coordinate mapping: $x_i \mapsto$

. . .

Kernel-PCA

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$. **Do PCA in the (implicit) feature space** \mathcal{H} .

• Equivalently, we can use the eigenvectors u'_j and eigenvalues λ_j of $K \in \mathbb{R}^{N \times N}$, with $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

• Coordinate mapping:
$$
x_i \mapsto \left(\sqrt{\lambda_1} u_1'^i, \ldots, \sqrt{\lambda_n} u_n'^i\right)
$$
.

Kernel-PCA

31 / 36

30 / 36

Multidimensional Scaling (MDS)

 $\boldsymbol{\mathsf{Given}}\colon \textsf{data } X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$

Task: find embedding $y^1, \ldots, y^m \subset \mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij} = ||x^i - x^j||.$

Solve, e.g., by gradient descent on

$$
\sum_{i,j} \quad (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2
$$

Multiple extensions:

- non-linear embedding
- take into account geodesic distances (e.g. IsoMap)
- arbitrary distances instead of Euclidean

Application – Image Superresolution

• Collect high-res face images

- Use KernelPCA with Gaussian kernel to learn non-linear projections
- For new low-res image: \triangleright scale to target high
	- resolution
	- \blacktriangleright project to closest point in face subspace

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]

Multidimensional Scaling (MDS)

2D projection of the swissroll Unrolled manifold 1.5 1.5 1.0 $1.0\,$ 0.5 0.5 0.0 0.0 -0.5 -0.5 -1.0 -1.0 -1.5 -1.0 -0.5 0.0 $\overline{1.5}$ $-1.0 -0.5 0.0$ 0.5 $\overline{1.0}$ 0.5 $\overline{1.0}$ $\overline{1.5}$

Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior

35 / 36

34 / 36

Other methods for dimensionality reduction and manifold learning

