
Machine Learning for Robotics
Intelligent Systems Series

Lecture 4

Georg Martius
Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

May 15, 2017

1 / 36

Unsupervised Learning
Clustering

2 / 36

Clustering

Given: data

X = {x1, . . . , xm} ⊂ Rd

Clustering – Transductive
Task: partition the point in X into clusters S1, . . . , SK .
Idea: elements within a cluster are similar to each other, elements in different
clusters are dissimilar

Clustering – Inductive
Task: define a partitioning function f : Rd → {1, . . . ,K} and set
Sk = { x ∈ X : f(x) = k }.

(allows assigning a cluster label also to new points, x 6= X: "out-of-sample
extension")

3 / 36

Clustering

Clustering is fundamentally problematic and subjective

4 / 36

Clustering

Clustering is fundamentally problematic and subjective

4 / 36

Clustering

Clustering is fundamentally problematic and subjective

4 / 36

Clustering – Linkage-based

General framework to create a hierarchical partitioning
• initialize: each point xi is it’s own cluster, Si = {i}
• repeat

I take two most similar clusters and merge into a single new cluster
• until K clusters left

Open question: how to define similarity between clusters?

5 / 36

Clustering – Linkage-based

Given: similarity between individual points d(xi, xj)

Single linkage clustering
Smallest distance between any cluster elements

d(S, S′) = mini∈S,j∈S′ d(xi, xj)

Average linkage clustering
Average distance between all cluster elements

d(S, S′) = 1
|S||S′|

∑
i∈S,j∈S′

d(xi, xj)

Max linkage clustering
Largest distance between any cluster elements

d(S, S′) = maxi∈S,j∈S′ d(xi, xj)

6 / 36

Example: Single linkage clustering

Theorem
The edges of a single linkage clustering forms a minimal spanning tree.

7 / 36

Show Jupyter notebook

8 / 36

Clustering – centroid-based clustering

Let c1, . . . , cK ∈ Rd be K cluster centroids. Then a distance-based clustering
function, c : X → {1, . . . ,K}, is given by the assignment

f(x) = argmin
k=1,...,K

‖x− ci‖ (arbitrary tie break)

(similar to K-means with training set {(c1, 1), . . . , (cK ,K)})

9 / 36

Clustering – centroid-based clustering

K-means objective
Find c1, . . . , cK ∈ Rd by minimizing the total Euclidean error

m∑
i=1
‖xi − cf(xi)‖2

Lloyd’s algorithm

• Initialize c1, . . . , cK (random subset of X, or smarter)
• repeat

I set Sk = {i : f(xi) = k} (current assignment)
I ck = 1

|Sk|

∑
i∈Sk

xi (mean of points in cluster)
• until no more changes to Sk

Demo: http://shabal.in/visuals/kmeans/6.html

10 / 36

http://shabal.in/visuals/kmeans/6.html

Clustering – centroid-based clustering

K-means objective
Find c1, . . . , cK ∈ Rd by minimizing the total Euclidean error

m∑
i=1
‖xi − cf(xi)‖2

Lloyd’s algorithm

• Initialize c1, . . . , cK (random subset of X, or smarter)
• repeat

I set Sk = {i : f(xi) = k} (current assignment)
I ck = 1

|Sk|

∑
i∈Sk

xi (mean of points in cluster)
• until no more changes to Sk

Demo: http://shabal.in/visuals/kmeans/6.html

10 / 36

Clustering – centroid-based clustering

Alternatives:
• k-mediods: like k-means, but centroids must be datapoints

update step chooses mediod of cluster instead of mean

• k-medians: like k-means, but minimize
∑m

i=1 ‖xi − cf(xi)‖
update step chooses median of each coordinate with each cluster

11 / 36

Clustering – graph-based clustering

For x1, . . . , xm form a graph G = (V,E) with vertex set V = {1, . . . ,m} and
edge set E. Each partitioning of the graph defines a clustering of the
original dataset.

Choice of edge set

ε-nearest neighbor graph

E = {(i, j) ⊂ V × V : ‖xi − xj‖ < ε}

k-nearest neighbor graph

E = {(i, j) ⊂ V × V : xi is a k-nearest neighbor of xj }

Weighted graph
Fully connected, but define edge weights wij = exp(−λ‖xi − xj‖2).

12 / 36

Example: Graph-based Clustering

Data set
13 / 36

http://shabal.in/visuals/kmeans/6.html

Example: Graph-based Clustering

Neighborhood Graph
13 / 36

Example: Graph-based Clustering

Min Cut: biased towards small clusters
13 / 36

Example: Graph-based Clustering

Normalized Cut: balanced weight of cut edges and volume of clusters
13 / 36

Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering

• Input: weight matrix W ∈ Rm×m

• compute graph Laplacian L = W −D,
for D = diag(d1, . . . , dm) with di =

∑
j wij .

• let v ∈ Rm be the eigenvector of L corresponding to the second smallest
eigenvalue (the smallest is 0, since L is singular)

• assign xi to cluster 1 if vi ≥ 0 and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest
remaining cluster.

14 / 36

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance
For any distance d and any α > 0, f(d) = f(α · d)

Richness
Range(f) is the set of all partitions of {1, . . . ,m}

Consistency
Let d and d′ be two distance functions. If f(d) = Γ, and d′ is a Γ-transform of
d, then f(d′) = Γ.

Definition: d′ is a Γ-transform of d, iff for any i, j in the same cluster
d′(i, j) ≤ d(i, j) and for i, j in different clusters, d′(i, j) ≥ d(i, j).

Theorem: "Impossibility of Clustering". For each m ≥ 2, there is no
clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)

15 / 36

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance
For any distance d and any α > 0, f(d) = f(α · d)

Richness
Range(f) is the set of all partitions of {1, . . . ,m}

Consistency
Let d and d′ be two distance functions. If f(d) = Γ, and d′ is a Γ-transform of
d, then f(d′) = Γ.

Definition: d′ is a Γ-transform of d, iff for any i, j in the same cluster
d′(i, j) ≤ d(i, j) and for i, j in different clusters, d′(i, j) ≥ d(i, j).
Theorem: "Impossibility of Clustering". For each m ≥ 2, there is no
clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)

15 / 36

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance
For any distance d and any α > 0, f(d) = f(α · d)

Richness
Range(f) is the set of all partitions of {1, . . . ,m}

Consistency
Let d and d′ be two distance functions. If f(d) = Γ, and d′ is a Γ-transform of
d, then f(d′) = Γ.

Definition: d′ is a Γ-transform of d, iff for any i, j in the same cluster
d′(i, j) ≤ d(i, j) and for i, j in different clusters, d′(i, j) ≥ d(i, j).
Theorem: "Impossibility of Clustering". For each m ≥ 2, there is no
clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)

15 / 36

Unsupervised Learning
Dimensionality Reduction

16 / 36

Dimensionality Reduction

Given: data

X = {x1, . . . , xN} ⊂ Rd

Dimensionality Reduction – Transductive
Task: Find a lower-dimensional representation

Y = {y1, . . . , yN} ⊂ Rn

with n� d, such that Y "represents X well"

Dimensionality Reduction – Inductive
Task: find a function φ : Rd → Rn and set yi = φ(xi)

(allows computing φ(x) for x 6= X: "out-of-sample extension")

17 / 36

Linear Dimensionality Reduction

Choice 1: φ : Rd → Rn is linear or affine.

Choice 2: "Y represents X well" means:

There’s a ψ : Rn → Rd such that
N∑

i=1
‖xi − ψ(yi)‖2 is small.

Principal Component Analysis
Given X = {x1, . . . , xN} ⊂ Rd, find function φ(x) = Wx and ψ(y) = Uy by
solving

min
U∈Rn×d

W∈Rd×n

N∑
i=1
‖xi − UWxi‖2

18 / 36

Linear Dimensionality Reduction

Choice 1: φ : Rd → Rn is linear or affine.

Choice 2: "Y represents X well" means:

There’s a ψ : Rn → Rd such that
N∑

i=1
‖xi − ψ(yi)‖2 is small.

Principal Component Analysis
Given X = {x1, . . . , xN} ⊂ Rd, find function φ(x) = Wx and ψ(y) = Uy by
solving

min
U∈Rn×d

W∈Rd×n

N∑
i=1
‖xi − UWxi‖2

18 / 36

Principal Component Analysis (PCA)

U,W = argmin
U∈Rn×d,W∈Rd×n

N∑
i=1
‖xi − UWxi‖2 (PCA)

Lemma
If U,W are minimizers of the above PCA problem, then the column of U are
orthogonal, and W = U>.

Theorem
Let C =

∑N
i=1 xix

>
i and let u1, . . . , un be n eigenvectors of A that correspond

to the largest n eigenvalues of C. Then U =
(
u1|u2| · · · |un

)
and W = U> are

minimizers of the PCA problem.

• C has orthogonal eigenvectors, since it is symmetric positive definite.
• U can also be obtained by singular value decomposition, X = USV .

Typically data is zero-meaned before: x′i = xi − 1
N

∑N
j=1 xj and thus C is

Covariance matrix. (Affine PCA)

19 / 36

Principal Component Analysis (PCA)

U,W = argmin
U∈Rn×d,W∈Rd×n

N∑
i=1
‖xi − UWxi‖2 (PCA)

Lemma
If U,W are minimizers of the above PCA problem, then the column of U are
orthogonal, and W = U>.

Theorem
Let C =

∑N
i=1 xix

>
i and let u1, . . . , un be n eigenvectors of A that correspond

to the largest n eigenvalues of C. Then U =
(
u1|u2| · · · |un

)
and W = U> are

minimizers of the PCA problem.

• C has orthogonal eigenvectors, since it is symmetric positive definite.
• U can also be obtained by singular value decomposition, X = USV .

Typically data is zero-meaned before: x′i = xi − 1
N

∑N
j=1 xj and thus C is

Covariance matrix. (Affine PCA)

19 / 36

Principal Component Analysis (PCA)

U,W = argmin
U∈Rn×d,W∈Rd×n

N∑
i=1
‖xi − UWxi‖2 (PCA)

Lemma
If U,W are minimizers of the above PCA problem, then the column of U are
orthogonal, and W = U>.

Theorem
Let C =

∑N
i=1 xix

>
i and let u1, . . . , un be n eigenvectors of A that correspond

to the largest n eigenvalues of C. Then U =
(
u1|u2| · · · |un

)
and W = U> are

minimizers of the PCA problem.

• C has orthogonal eigenvectors, since it is symmetric positive definite.
• U can also be obtained by singular value decomposition, X = USV .

Typically data is zero-meaned before: x′i = xi − 1
N

∑N
j=1 xj and thus C is

Covariance matrix. (Affine PCA)

19 / 36

Principal Component Analysis – Visualization

Data

20 / 36

Principal Component Analysis – Visualization

PCA

20 / 36

Principal Component Analysis – Visualization

Projected onto first component

-3 -2 -1 0 1 2 3

20 / 36

Principal Component Analysis – Visualization

Reconstructed from first component

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

20 / 36

Principal Component Analysis – Alternative Views

There’s (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:
• find subspace such that projecting to it orthogonally results in the smallest
reconstruction error

• find subspace such that projecting to it orthogonally results preserves
most of the data variance

21 / 36

Principal Component Analysis – as Variance maximization projection
Goal:

find direction u1 ∈ Rd where the data has largest variance
Projection: u>1 xi. Variance in projected space:

1
N

N∑
i=1

(u>1 xi − u>1 x̄) = u>Su

with S =
∑N

i=1(xi − x̄)(xi − x̄)T (Covariance matrix).

Maximize with constraint u>u = 1:

u1 = argmax
u

u>Su+ λ(1− u>u)

Derivative w.r.t. u: Su = λu (Eigenvalue problem)
Variance is given by: u>Su = λ (use u>u = 1)

The Eigenvector corresponding to the largest Eigenvalue is the direction of
largest projected variance.
All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

22 / 36

Principal Component Analysis – as Variance maximization projection
Goal:

find direction u1 ∈ Rd where the data has largest variance
Projection: u>1 xi. Variance in projected space:

1
N

N∑
i=1

(u>1 xi − u>1 x̄) = u>Su

with S =
∑N

i=1(xi − x̄)(xi − x̄)T (Covariance matrix).
Maximize with constraint u>u = 1:

u1 = argmax
u

u>Su+ λ(1− u>u)

Derivative w.r.t. u: Su = λu (Eigenvalue problem)
Variance is given by: u>Su = λ (use u>u = 1)

The Eigenvector corresponding to the largest Eigenvalue is the direction of
largest projected variance.
All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

22 / 36

Principal Component Analysis – Applications

Data Visualization
If the original data is high-dimensional, use PCA with n = 2 or n = 3 to obtain
low-dimensional representation that can be visualized.

Data Compression
If the original data is high-dimensional, use PCA to obtain a lower-dimensional
representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising
If the original data is noisy, apply PCA and reconstruction to obtain a less noisy
representation.

n depends on noise level if known, otherwise as for compression.

23 / 36

Genes mirror geography in Europe [Novembre et al, Nature 2008]

24 / 36

Canonical Correlation Analysis (CCA) [Hotelling, 1936]

Given: paired data

X1 = {x1
1, . . . , x

N
1 } ⊂ Rd X2 = {x1

2, . . . , x
N
2 } ⊂ Rd′

for example (after some preprocessing):
• DNA expression and gene expression
• images and text captions.

Canonical Correlation Analysis (CCA)
Find projections φ1(x1) = U1x1 and φ2(x2) = U2x2 with U1 ∈ Rd×n and
U2 ∈ Rd′×n such that after projection X1 and X2 are maximally correlated.

25 / 36

Canonical Correlation Analysis (CCA)

One dimension: find directions u1 ∈ Rd, u2 ∈ Rd′ , such that

max
u1∈Rd,u2∈Rd′

corr(u>1 X1, u
>
2 X2).

With C11 = cov(X1, X1), C22 = cov(X2, X2) and C12 = cov(X1, X2),

max
u1∈Rd,u2∈Rd′

u>1 C12u2√
u>1 C11u1

√
u>2 C22u2

Find u1, u2 by solving generalized eigenvalue problem for maximal λ:(
0 C12
C>12 0

)(
u1
u2

)
= λ

(
C11 0
0 C22

)(
u1
u2

)

26 / 36

Example: Canonical Correlation Analysis for fMRI Data

data 1: video sequence data 2: fMRI signal while watching

27 / 36

Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples xi ∈ Rd, PCA finds the directions of maximal
covariance. Assume

∑
i xi = 0 (e.g. by first subtracting the mean).

• The PCA directions u1, . . . , un are
the eigenvectors of the covariance
matrix

C = 1
m

m∑
i=1

xix
>
i

sorted by their eigenvalues.

• We can express xi in PCA-space by P (xi) =
∑n

j=1〈xi, uj〉uj .

• Lower-dim. coordinate mapping: xi 7→


〈xi, u1〉
〈xi, u2〉
. . .

〈xi, un〉

 ∈ Rn

28 / 36

Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.

• The kernel-PCA directions
u1, . . . , un are the eigenvectors of
the covariance operator

C = 1
N

N∑
i=1

φ(xi)φ(xi)>

sorted by their eigenvalue.

• Lower-dim. coordinate mapping: xi 7→


〈φ(xi), u1〉
〈φ(xi), u2〉

. . .
〈φ(xi), un〉

 ∈ Rn

29 / 36

Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.

• Equivalently, we can use the
eigenvectors u′j and eigenvalues λj

of K ∈ RN×N , with
Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj)

• Coordinate mapping: xi 7→
(√

λ1u
′i
1 , . . . ,

√
λnu

′i
n

)
.

Kernel-PCA

30 / 36

Example: Non-linear dimensionality reduction with Kernel PCA

31 / 36

Application – Image Superresolution

• Collect high-res face
images

• Use KernelPCA with
Gaussian kernel to learn
non-linear projections

• For new low-res image:
I scale to target high

resolution
I project to closest point

in face subspace
reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]

32 / 36

Multidimensional Scaling (MDS)

Given: data X = {x1, . . . , xm} ⊂ Rd

Task: find embedding y1, . . . , ym ⊂ Rn that preserves pairwise distances
∆ij = ‖xi − xj‖.

Solve, e.g., by gradient descent on∑
i,j

(‖yi − yj‖2 −∆2
ij)2

Multiple extensions:
• non-linear embedding
• take into account geodesic distances (e.g. IsoMap)
• arbitrary distances instead of Euclidean

33 / 36

Multidimensional Scaling (MDS)

34 / 36

Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior

35 / 36

Other methods for dimensionality reduction and manifold learning

36 / 36

