Machine Learning for Robotics Intelligent Systems Series Lecture 4

Georg Martius Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

May 15, 2017

1/36

Clustering

Given: data

$$X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$$

Clustering – Transductive

Task: partition the point in X into **clusters** S_1, \ldots, S_K . Idea: elements within a cluster are similar to each other, elements in different clusters are dissimilar

Clustering – Inductive

Task: define a partitioning function $f : \mathbb{R}^d \to \{1, \dots, K\}$ and set $S_k = \{ x \in X : f(x) = k \}.$

(allows assigning a cluster label also to new points, $x \neq X$: "out-of-sample extension")

Unsupervised Learning Clustering

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective

4/36

Clustering - Linkage-based

General framework to create a **hierarchical partitioning**

- initialize: each point x_i is it's own cluster, $S_i = \{i\}$
- repeat
 - take two most similar clusters and merge into a single new cluster
- until K clusters left

Open question: how to define similarity between clusters?

Clustering – Linkage-based

Given: similarity between individual points $d(x_i, x_j)$

Single linkage clustering Smallest distance between any cluster elements

 $d(S, S') = \min_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)$

Average linkage clustering

Average distance between all cluster elements

$$d(S, S') = \frac{1}{|S||S'|} \sum_{i \in S, j \in S'} d(x_i, x_j)$$

Max linkage clustering

Largest distance between any cluster elements

 $d(S, S') = \max_{i \in S, j \in \mathbb{S}'} d(x_i, x_j)$

Theorem

The edges of a single linkage clustering forms a minimal spanning tree.

Clustering – centroid-based clustering

Let $c_1, \ldots, c_K \in \mathbb{R}^d$ be K cluster centroids. Then a distance-based clustering function, $c : \mathcal{X} \to \{1, \ldots, K\}$, is given by the assignment

 $f(x) = \operatorname*{argmin}_{k=1,\dots,K} \|x - c_i\| \qquad (\text{arbitrary tie break})$

(similar to K-means with training set $\{(c_1, 1), \ldots, (c_K, K)\}$)

Show Jupyter notebook

Clustering – centroid-based clustering

K-means objective

Find $c_1, \ldots, c_K \in \mathbb{R}^d$ by minimizing the total Euclidean error

$$\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2$$

K-means objective

Find $c_1, \ldots, c_K \in \mathbb{R}^d$ by minimizing the total Euclidean error

$$\sum_{i=1}^{m} \|x_i - c_{f(x_i)}\|^2$$

Lloyd's algorithm

- Initialize c_1, \ldots, c_K (random subset of X, or smarter)
- repeat

▶ set $S_k = \{i : f(x_i) = k\}$ (current assignment) ▶ $c_k = \frac{1}{|S_k|} \sum_{i \in S_k} x_i$ (mean of points in cluster)

• until no more changes to S_k

Demo: http://shabal.in/visuals/kmeans/6.html

Alternatives:

- *k*-mediods: like *k*-means, but centroids must be datapoints update step chooses mediod of cluster instead of mean
- k-medians: like k-means, but minimize $\sum_{i=1}^{m} ||x_i c_{f(x_i)}||$ update step chooses median of each coordinate with each cluster

10/36

Clustering – graph-based clustering

For x_1, \ldots, x_m form a graph G = (V, E) with vertex set $V = \{1, \ldots, m\}$ and edge set E. Each **partitioning of the graph defines a clustering** of the original dataset.

Choice of edge set

 $\epsilon\text{-nearest}$ neighbor graph

$$E = \{(i,j) \subset V \times V : ||x_i - x_j|| < \epsilon\}$$

k-nearest neighbor graph

 $E = \{(i, j) \subset V \times V : x_i \text{ is a } k \text{-nearest neighbor of } x_j \}$

Weighted graph

Fully connected, but define edge weights $w_{ij} = \exp(-\lambda \|x_i - x_j\|^2)$.

Data set

Example: Graph-based Clustering

Neighborhood Graph

13 / 36

Example: Graph-based Clustering

Example: Graph-based Clustering

Min Cut: biased towards small clusters

Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering

- Input: weight matrix $W \in \mathbb{R}^{m \times m}$
- compute graph Laplacian L = W D, for $D = diag(d_1, \ldots, d_m)$ with $d_i = \sum_j w_{ij}$.
- let $v \in \mathbb{R}^m$ be the eigenvector of L corresponding to the second smallest eigenvalue (the smallest is 0, since L is singular)
- assign x_i to cluster 1 if $v_i \ge 0$ and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest remaining cluster.

Normalized Cut: balanced weight of cut edges and volume of clusters

Scale-Invariance

For any distance d and any $\alpha>0,\ f(d)=f(\alpha\cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of d, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Scale-Invariance For any distance *d* and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d)=\Gamma,$ and d' is a $\Gamma\text{-transform}$ of d, then $f(d')=\Gamma.$

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m \ge 2$, there is no clustering function f that satisfies all three axioms at the same time.

15/36

Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance d and any $\alpha > 0$, $f(d) = f(\alpha \cdot d)$

Richness Range(f) is the set of all partitions of $\{1, \ldots, m\}$

Consistency

Let d and d' be two distance functions. If $f(d) = \Gamma$, and d' is a Γ -transform of d, then $f(d') = \Gamma$.

Definition: d' is a Γ -transform of d, iff for any i, j in the same cluster $d'(i, j) \leq d(i, j)$ and for i, j in different clusters, $d'(i, j) \geq d(i, j)$.

Theorem: "Impossibility of Clustering". For each $m \ge 2$, there is no clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)

15 / 36

Unsupervised Learning Dimensionality Reduction Given: data

$$X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$$

Dimensionality Reduction – Transductive Task: Find a lower-dimensional representation

$$Y = \{y^1, \dots, y^N\} \subset \mathbb{R}^n$$

with $n \ll d$, such that Y "represents X well"

Dimensionality Reduction – Inductive

Task: find a function $\phi : \mathbb{R}^d \to \mathbb{R}^n$ and set $y_i = \phi(x_i)$ (allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Linear Dimensionality Reduction

Choice 1: $\phi : \mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a
$$\psi: \mathbb{R}^n o \mathbb{R}^d$$
 such that $\sum_{i=1}^N \|x_i - \psi(y_i)\|^2$ is small.

17/36

Linear Dimensionality Reduction

Choice 1: $\phi : \mathbb{R}^d \to \mathbb{R}^n$ is linear or affine.

Choice 2: "*Y* represents *X* well" means:

There's a
$$\psi: \mathbb{R}^n \to \mathbb{R}^d$$
 such that $\sum_{i=1}^N \|x_i - \psi(y_i)\|^2$ is small.

Principal Component Analysis

Given $X=\{x^1,\ldots,x^N\}\subset \mathbb{R}^d,$ find function $\phi(x)=Wx$ and $\psi(y)=Uy$ by solving

$$\min_{\substack{U \in \mathbb{R}^{n \times d} \\ W \in \mathbb{R}^{d \times n}}} \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$

Principal Component Analysis (PCA)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$
(PCA)

Lemma

If U, W are minimizers of the above PCA problem, then the column of U are orthogonal, and $W = U^{\top}$.

Principal Component Analysis (PCA)

$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2$ (PCA)

Lemma

If U, W are minimizers of the above PCA problem, then the column of U are orthogonal, and $W = U^{\top}$.

Theorem

Let $C = \sum_{i=1}^{N} x_i x_i^{\top}$ and let u_1, \ldots, u_n be n eigenvectors of A that correspond to the largest n eigenvalues of C. Then $U = (u_1 | u_2 | \cdots | u_n)$ and $W = U^{\top}$ are minimizers of the PCA problem.

- C has orthogonal eigenvectors, since it is symmetric positive definite.
- U can also be obtained by singular value decomposition, X = USV.

Principal Component Analysis (PCA)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$
(PCA)

Lemma

If U, W are minimizers of the above PCA problem, then the column of U are orthogonal, and $W = U^{\top}$.

Theorem

Let $C = \sum_{i=1}^{N} x_i x_i^{\top}$ and let u_1, \ldots, u_n be *n* eigenvectors of *A* that correspond to the largest *n* eigenvalues of *C*. Then $U = (u_1 | u_2 | \cdots | u_n)$ and $W = U^{\top}$ are minimizers of the PCA problem.

• C has orthogonal eigenvectors, since it is symmetric positive definite.

• U can also be obtained by singular value decomposition, X = USV.

Typically data is zero-meaned before: $x'_i = x_i - \frac{1}{N} \sum_{j=1}^N x_j$ and thus C is *Covariance matrix*. (Affine PCA)

19/36

Principal Component Analysis – Visualization

Data

Principal Component Analysis – Visualization

PCA

Principal Component Analysis – Visualization

Projected onto first component

Principal Component Analysis – Visualization

Reconstructed from first component

Principal Component Analysis – Alternative Views

There's (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:

- find subspace such that projecting to it orthogonally results in the **smallest** reconstruction error
- find subspace such that projecting to it orthogonally results **preserves most of the data variance**

Principal Component Analysis – as Variance maximization projection Goal:

find direction $u_1 \in \mathbb{R}^d$ where the data has largest variance Projection: $u_1^\top x_i$. Variance in projected space:

$$\frac{1}{N}\sum_{i=1}^{N}(u_1^{\top}x_i - u_1^{\top}\bar{x}) = u^{\top}Su$$

with
$$S = \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$
 (Covariance matrix).

Principal Component Analysis – as Variance maximization projection Goal:

find direction $u_1 \in \mathbb{R}^d$ where the data has largest variance Projection: $u_1^\top x_i$. Variance in projected space:

$$\frac{1}{N}\sum_{i=1}^{N}(u_1^{\top}x_i - u_1^{\top}\bar{x}) = u^{\top}Su$$

with $S = \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$ (Covariance matrix). Maximize with constraint $u^{\top}u = 1$:

$$u_1 = \operatorname*{argmax}_{u} u^{\top} S u + \lambda (1 - u^{\top} u)$$

Derivative w.r.t. u: $Su = \lambda u$ (Eigenvalue problem) Variance is given by: $u^{\top}Su = \lambda$ (use $u^{\top}u = 1$)

The Eigenvector corresponding to the largest Eigenvalue is the direction of largest projected variance.

All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

22/36

Principal Component Analysis – Applications

Data Visualization

If the original data is high-dimensional, use PCA with n = 2 or n = 3 to obtain low-dimensional representation that can be visualized.

Data Compression

If the original data is high-dimensional, use PCA to obtain a lower-dimensional representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising

If the original data is noisy, apply PCA and reconstruction to obtain a less noisy representation.

n depends on noise level if known, otherwise as for compression.

23 / 36

Canonical Correlation Analysis (CCA)

[Hotelling, 1936]

Given: paired data

$$X_1 = \{x_1^1, \dots, x_1^N\} \subset \mathbb{R}^d$$
 $X_2 = \{x_2^1, \dots, x_2^N\} \subset \mathbb{R}^{d'}$

for example (after some preprocessing):

- DNA expression and gene expression
- *images* and *text captions*.

Canonical Correlation Analysis (CCA)

Find projections $\phi_1(x_1) = U_1 x_1$ and $\phi_2(x_2) = U_2 x_2$ with $U_1 \in \mathbb{R}^{d \times n}$ and $U_2 \in \mathbb{R}^{d' \times n}$ such that after projection X_1 and X_2 are **maximally correlated**.

Canonical Correlation Analysis (CCA)

One dimension: find directions $u_1 \in \mathbb{R}^d$, $u_2 \in \mathbb{R}^{d'}$, such that

 $\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \operatorname{corr}(u_1^\top X_1, u_2^\top X_2).$

With
$$C_{11} = \operatorname{cov}(X_1, X_1)$$
, $C_{22} = \operatorname{cov}(X_2, X_2)$ and $C_{12} = \operatorname{cov}(X_1, X_2)$,

$$\max_{u_1 \in R^d, u_2 \in \mathbb{R}^{d'}} \frac{u_1^{\top} C_{12} u_2}{\sqrt{u_1^{\top} C_{11} u_1} \sqrt{u_2^{\top} C_{22} u_2}}$$

Find u_1, u_2 by solving **generalized eigenvalue problem** for maximal λ :

$$\begin{pmatrix} \mathbf{0} & C_{12} \\ C_{12}^\top & \mathbf{0} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & \mathbf{0} \\ \mathbf{0} & C_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

Example: Canonical Correlation Analysis for fMRI Data

26 / 36

Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples $x_i \in \mathbb{R}^d$, PCA finds the directions of maximal covariance. Assume $\sum_i x_i = \mathbf{0}$ (e.g. by first subtracting the mean).

• The PCA directions u_1, \ldots, u_n are the *eigenvectors* of the covariance matrix

$$C = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\top}$$

sorted by their eigenvalues.

• We can express
$$x_i$$
 in PCA-space by $P(x_i) = \sum_{j=1}^n \langle x_i, u_j \rangle u_j$

• Lower-dim. coordinate mapping: $x_i \mapsto \begin{pmatrix} \langle x_i, u_1 \rangle \\ \langle x_i, u_2 \rangle \\ \dots \\ \langle x_i, u_n \rangle \end{pmatrix} \in \mathbb{R}^n$

Kernel-PCA

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

• The kernel-PCA directions u_1, \ldots, u_n are the eigenvectors of the covariance operator

$$C = \frac{1}{N} \sum_{i=1}^{N} \phi(x_i) \phi(x_i)^{\top}$$

sorted by their eigenvalue.

• Lower-dim. coordinate mapping: $x_i \mapsto$

Kernel-PCA

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

• Equivalently, we can use the eigenvectors u'_j and eigenvalues λ_j of $K \in \mathbb{R}^{N \times N}$, with $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

• Coordinate mapping:
$$x_i \mapsto \left(\sqrt{\lambda_1}u_1^{\prime i}, \ldots, \sqrt{\lambda_n}u_n^{\prime i}\right)$$
.

Kernel-PCA

30 / 36

31/36

Application – Image Superresolution

 Collect high-res face images

- Use KernelPCA with Gaussian kernel to learn non-linear projections
- For new low-res image:
 - scale to target high resolution
 - project to closest point in face subspace

Multidimensional Scaling (MDS)

Given: data $X = \{x^1, \dots, x^m\} \subset \mathbb{R}^d$

Task: find embedding $y^1, \ldots, y^m \in \mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij} = \|x^i - x^j\|$.

Solve, e.g., by gradient descent on

$$\sum_{i,j} \quad (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Multiple extensions:

- non-linear embedding
- take into account geodesic distances (e.g. IsoMap)
- arbitrary distances instead of Euclidean

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior

35 / 36

34/36

Other methods for dimensionality reduction and manifold learning

