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Unsupervised Learning
Clustering
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Clustering

Given: data

X = {x1, . . . , xm} ⊂ Rd

Clustering – Transductive
Task: partition the point in X into clusters S1, . . . , SK .

Idea: elements within a cluster are similar to each other, elements in different
clusters are dissimilar

Clustering – Inductive
Task: define a partitioning function f : Rd → {1, . . . ,K} and set
Sk = { x ∈ X : f(x) = k }.

(allows assigning a cluster label also to new points, x 6= X: "out-of-sample
extension")
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Clustering

Clustering is fundamentally problematic and subjective
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Clustering – Linkage-based

General framework to create a hierarchical partitioning
• initialize: each point xi is it’s own cluster, Si = {i}
• repeat

take two most similar clusters and merge into a single new cluster
• until K clusters left

Open question: how to define similarity between clusters?
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Clustering – Linkage-based

Given: similarity between individual points d(xi, xj)

Single linkage clustering
Smallest distance between any cluster elements

d(S, S′) = mini∈S,j∈S′ d(xi, xj)

Average linkage clustering
Average distance between all cluster elements

d(S, S′) = 1
|S||S′|

∑
i∈S,j∈S′

d(xi, xj)

Max linkage clustering
Largest distance between any cluster elements

d(S, S′) = maxi∈S,j∈S′ d(xi, xj)
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Example: Single linkage clustering

Theorem
The edges of a single linkage clustering forms a minimal spanning tree.
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Show Jupyter notebook
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Clustering – centroid-based clustering

Let c1, . . . , cK ∈ Rd be K cluster centroids. Then a distance-based clustering
function, c : X → {1, . . . ,K}, is given by the assignment

f(x) = argmin
k=1,...,K

‖x− ci‖ (arbitrary tie break)

(similar to K-means with training set {(c1, 1), . . . , (cK ,K)})
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Clustering – centroid-based clustering

K-means objective
Find c1, . . . , cK ∈ Rd by minimizing the total Euclidean error

m∑
i=1
‖xi − cf(xi)‖2

Lloyd’s algorithm
• Initialize c1, . . . , cK (random subset of X, or smarter)
• repeat

set Sk = {i : f(xi) = k} (current assignment)
ck = 1

|Sk|

∑
i∈Sk

xi (mean of points in cluster)
• until no more changes to Sk

Demo: http://shabal.in/visuals/kmeans/6.html
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Clustering – centroid-based clustering

Alternatives:
• k-mediods: like k-means, but centroids must be datapoints

update step chooses mediod of cluster instead of mean

• k-medians: like k-means, but minimize
∑m

i=1 ‖xi − cf(xi)‖
update step chooses median of each coordinate with each cluster
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Clustering – graph-based clustering

For x1, . . . , xm form a graph G = (V,E) with vertex set V = {1, . . . ,m} and
edge set E. Each partitioning of the graph defines a clustering of the
original dataset.

Choice of edge set

ε-nearest neighbor graph

E = {(i, j) ⊂ V × V : ‖xi − xj‖ < ε}

k-nearest neighbor graph

E = {(i, j) ⊂ V × V : xi is a k-nearest neighbor of xj }

Weighted graph
Fully connected, but define edge weights wij = exp(−λ‖xi − xj‖2).
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Example: Graph-based Clustering

Data set
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Example: Graph-based Clustering

Neighborhood Graph
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Example: Graph-based Clustering

Min Cut: biased towards small clusters
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Example: Graph-based Clustering

Normalized Cut: balanced weight of cut edges and volume of clusters
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Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering
• Input: weight matrix W ∈ Rm×m

• compute graph Laplacian L = W −D,
for D = diag(d1, . . . , dm) with di =

∑
j wij .

• let v ∈ Rm be the eigenvector of L corresponding to the second smallest
eigenvalue (the smallest is 0, since L is singular)

• assign xi to cluster 1 if vi ≥ 0 and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the largest
remaining cluster.
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Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance
For any distance d and any α > 0, f(d) = f(α · d)

Richness
Range(f) is the set of all partitions of {1, . . . ,m}

Consistency
Let d and d′ be two distance functions. If f(d) = Γ, and d′ is a Γ-transform of
d, then f(d′) = Γ.

Definition: d′ is a Γ-transform of d, iff for any i, j in the same cluster
d′(i, j) ≤ d(i, j) and for i, j in different clusters, d′(i, j) ≥ d(i, j).

Theorem: "Impossibility of Clustering". For each m ≥ 2, there is no
clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)
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Unsupervised Learning
Dimensionality Reduction
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Dimensionality Reduction

Given: data

X = {x1, . . . , xN} ⊂ Rd

Dimensionality Reduction – Transductive
Task: Find a lower-dimensional representation

Y = {y1, . . . , yN} ⊂ Rn

with n� d, such that Y "represents X well"

Dimensionality Reduction – Inductive
Task: find a function φ : Rd → Rn and set yi = φ(xi)

(allows computing φ(x) for x 6= X: "out-of-sample extension")
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Linear Dimensionality Reduction

Choice 1: φ : Rd → Rn is linear or affine.

Choice 2: "Y represents X well" means:

There’s a ψ : Rn → Rd such that
N∑

i=1
‖xi − ψ(yi)‖2 is small.

Principal Component Analysis
Given X = {x1, . . . , xN} ⊂ Rd, find function φ(x) = Wx and ψ(y) = Uy by
solving

min
U∈Rn×d

W∈Rd×n

N∑
i=1
‖xi − UWxi‖2
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Principal Component Analysis (PCA)

U,W = argmin
U∈Rn×d,W∈Rd×n

N∑
i=1
‖xi − UWxi‖2 (PCA)

Lemma
If U,W are minimizers of the above PCA problem, then the column of U are
orthogonal, and W = U>.

Theorem

Let C =
∑N

i=1 xix
>
i and let u1, . . . , un be n eigenvectors of A that correspond

to the largest n eigenvalues of C. Then U =
(
u1|u2| · · · |un

)
and W = U> are

minimizers of the PCA problem.

• C has orthogonal eigenvectors, since it is symmetric positive definite.
• U can also be obtained by singular value decomposition, X = USV .

Typically data is zero-meaned before: x′i = xi − 1
N

∑N
j=1 xj and thus C is

Covariance matrix. (Affine PCA)
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Principal Component Analysis – Visualization

Data
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Principal Component Analysis – Visualization

PCA
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Principal Component Analysis – Visualization

Projected onto first component

-3 -2 -1 0 1 2 3
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Principal Component Analysis – Visualization

Reconstructed from first component
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Principal Component Analysis – Alternative Views

There’s (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:
• find subspace such that projecting to it orthogonally results in the smallest
reconstruction error

• find subspace such that projecting to it orthogonally results preserves
most of the data variance
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Principal Component Analysis – as Variance maximization projection
Goal:

find direction u1 ∈ Rd where the data has largest variance
Projection: u>1 xi. Variance in projected space:

1
N

N∑
i=1

(u>1 xi − u>1 x̄) = u>Su

with S =
∑N

i=1(xi − x̄)(xi − x̄)T (Covariance matrix).

Maximize with constraint u>u = 1:

u1 = argmax
u

u>Su+ λ(1− u>u)

Derivative w.r.t. u: Su = λu (Eigenvalue problem)
Variance is given by: u>Su = λ (use u>u = 1)

The Eigenvector corresponding to the largest Eigenvalue is the direction of
largest projected variance.
All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

Georg Martius Machine Learning for Robotics May 15, 2017 22 / 36



Principal Component Analysis – as Variance maximization projection
Goal:

find direction u1 ∈ Rd where the data has largest variance
Projection: u>1 xi. Variance in projected space:

1
N

N∑
i=1

(u>1 xi − u>1 x̄) = u>Su

with S =
∑N

i=1(xi − x̄)(xi − x̄)T (Covariance matrix).
Maximize with constraint u>u = 1:

u1 = argmax
u

u>Su+ λ(1− u>u)

Derivative w.r.t. u: Su = λu (Eigenvalue problem)
Variance is given by: u>Su = λ (use u>u = 1)

The Eigenvector corresponding to the largest Eigenvalue is the direction of
largest projected variance.
All PCA components are given by the Eigenvectors with decreasing Eigenvalues.

Georg Martius Machine Learning for Robotics May 15, 2017 22 / 36



Principal Component Analysis – Applications

Data Visualization
If the original data is high-dimensional, use PCA with n = 2 or n = 3 to obtain
low-dimensional representation that can be visualized.

Data Compression
If the original data is high-dimensional, use PCA to obtain a lower-dimensional
representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising
If the original data is noisy, apply PCA and reconstruction to obtain a less noisy
representation.

n depends on noise level if known, otherwise as for compression.
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Genes mirror geography in Europe [Novembre et al, Nature 2008]
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Canonical Correlation Analysis (CCA) [Hotelling, 1936]

Given: paired data

X1 = {x1
1, . . . , x

N
1 } ⊂ Rd X2 = {x1

2, . . . , x
N
2 } ⊂ Rd′

for example (after some preprocessing):
• DNA expression and gene expression
• images and text captions.

Canonical Correlation Analysis (CCA)

Find projections φ1(x1) = U1x1 and φ2(x2) = U2x2 with U1 ∈ Rd×n and
U2 ∈ Rd′×n such that after projection X1 and X2 are maximally correlated.
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Canonical Correlation Analysis (CCA)

One dimension: find directions u1 ∈ Rd, u2 ∈ Rd′ , such that

max
u1∈Rd,u2∈Rd′

corr(u>1 X1, u
>
2 X2).

With C11 = cov(X1, X1), C22 = cov(X2, X2) and C12 = cov(X1, X2),

max
u1∈Rd,u2∈Rd′

u>1 C12u2√
u>1 C11u1

√
u>2 C22u2

Find u1, u2 by solving generalized eigenvalue problem for maximal λ:(
0 C12
C>12 0

)(
u1
u2

)
= λ

(
C11 0
0 C22

)(
u1
u2

)
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Example: Canonical Correlation Analysis for fMRI Data

data 1: video sequence data 2: fMRI signal while watching
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Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples xi ∈ Rd, PCA finds the directions of maximal
covariance. Assume

∑
i xi = 0 (e.g. by first subtracting the mean).

• The PCA directions u1, . . . , un are
the eigenvectors of the covariance
matrix

C = 1
m

m∑
i=1

xix
>
i

sorted by their eigenvalues.

• We can express xi in PCA-space by P (xi) =
∑n

j=1〈xi, uj〉uj .

• Lower-dim. coordinate mapping: xi 7→


〈xi, u1〉
〈xi, u2〉
. . .

〈xi, un〉

 ∈ Rn

Georg Martius Machine Learning for Robotics May 15, 2017 28 / 36



Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.

• The kernel-PCA directions
u1, . . . , un are the eigenvectors of
the covariance operator

C = 1
N

N∑
i=1

φ(xi)φ(xi)>

sorted by their eigenvalue.

• Lower-dim. coordinate mapping: xi 7→


〈φ(xi), u1〉
〈φ(xi), u2〉

. . .
〈φ(xi), un〉

 ∈ Rn
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Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.

• Equivalently, we can use the
eigenvectors u′j and eigenvalues λj

of K ∈ RN×N , with
Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj)

• Coordinate mapping: xi 7→
( √

λ1u
′i
1 , . . . ,

√
λnu

′i
n

)
.

Kernel-PCA
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Example: Non-linear dimensionality reduction with Kernel PCA
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Application – Image Superresolution

• Collect high-res face
images

• Use KernelPCA with
Gaussian kernel to learn
non-linear projections

• For new low-res image:
scale to target high
resolution
project to closest point
in face subspace

reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]
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Multidimensional Scaling (MDS)

Given: data X = {x1, . . . , xm} ⊂ Rd

Task: find embedding y1, . . . , ym ⊂ Rn that preserves pairwise distances
∆ij = ‖xi − xj‖.

Solve, e.g., by gradient descent on∑
i,j

(‖yi − yj‖2 −∆2
ij)2

Multiple extensions:
• non-linear embedding
• take into account geodesic distances (e.g. IsoMap)
• arbitrary distances instead of Euclidean
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Multidimensional Scaling (MDS)
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Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior
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Other methods for dimensionality reduction and manifold learning
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