Machine Learning for Robotics
Intelligent Systems Series
Lecture 5

Georg Martius

MPI for Intelligent Systems, Tiibingen, Germany

May 22, 2017

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

MAX-PLANCK-GESELLSCHAFT

1/34

Dimensionality Reduction — reminder

Given: data

X ={z',. . 2N} CcR?

Dimensionality Reduction — Transductive
Task: Find a lower-dimensional representation

Y={y',...,9"N} CR"
with n < d, such that Y “represents X well”

Dimensionality Reduction — Inductive
Task: find a function ¢ : R? — R™ and set y; = ¢(z;)

(allows computing ¢(z) for z # X: "out-of-sample extension")

3/34

Unsupervised Learning
Dimensionality Reduction — continued

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:
Model “represents X well” as a cost function and optimize for it.

N
For instance minimize: Y |lzs — ¥(y)||?  where y = ¢(2;), ¢ : R — T™
i=1

and 1) : R* — R

2 /34

4/34



Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:
Model “represents X well” as a cost function and optimize for it.

N
For instance minimize: Y |lzs — ¥(y)||?  where y = ¢(2;), 0 : R4 — T™
i=1
and ¢ : R” — R%.
for linear ¢, v: Principal Component Analysis (PCA)
for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and v: Autoencoder

4/34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:
Model “represents X well” as a cost function and optimize for it.

N
For instance minimize: Y |lzs — ¥(y)||?  where y = ¢(2;), ¢ : R4 — T™
i=1
and ¢ : R — R,
for linear ¢, v: Principal Component Analysis (PCA)
for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and v: Autoencoder

Optimizing a Cost for non-parametric transformations:

N
For instance minimize: So Ml — 2112 = Ny — v 112> where y € R™.
i=1,;=1

Multidimensional Scaling, Local linear Embedding, Isomap

4/34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:
Model “represents X well” as a cost function and optimize for it.

N
For instance minimize: Y |lzs — ¥ (y)||?  where y = ¢(2;), 0 : RS — T™
i=1
and ¢ : R” — R%.
for linear ¢, v: Principal Component Analysis (PCA)
for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and v: Autoencoder

Optimizing a Cost for non-parametric transformations:
N

For instance minimize: S M — 202 = Nlye — v 121> where y € R™.
i=1,;=1

4/34

Principal Component Analysis (PCA) (reminder)

N
UW = argmin > i = UWa||? (PCA)
UE]R”Xd,WE]RdX" i1

Solution: U = (ul\uz\ e |un) and W =UT with uq,...,u,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).

5 /34



Principal Component Analysis (PCA) (reminder)

N
UW = argmin Z lz; — UWa,|? (PCA)
UeRnxd, WeRdxn 73
Solution: U = (u1|ug|---|u,) and W =UT with uy, ..., u,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).
Data PCA

5/34
Kernel-PCA (reminder)
Given samples z; € X, kernel k : X x X — R with an implicit feature map
¢: X — M. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):
use Eigenvalues of K;; = (¢(x;), o(z;)) = k(z4, ;)
7/ 34

Principal Component Analysis Example

Images: 64 x 64
Dim: n = 4096
Number: N = 698

Different head
orientations.

2nd dimension

1st dimension

PCA analysis does not correspond to orientation

6 /34

Kernel-PCA (reminder)
Given samples x; € X, kernel k: X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space .
Kernel trick (reformulation by inner products):
use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(zs,2;)

¢
¢

Kernel PCA
T

2nd dimension

.
1st dimension

7/ 34



Kernel-PCA (reminder)
Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space .
Kernel trick (reformulation by inner products):
use Eigenvalues of K;; = (¢(z;), ¢(z;)) = k(z4, ;)

Kernel PCA
T

2nd dimension

Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness

7 /34

Multidimensional Scaling (MDS)

Given: data X = {z!,...,2V} C R?

Task: find embedding 3',...,y" C R™ that preserves pairwise distances
Aij = =" — 2’|

Solve, e.g., by gradient descent on (normalized)

1 . .
T =32 > (ly' = I1P - A%)?
1<J

o<y

Derivative is given by:

9J(y) 2 k 7112 2 Yk —y
= — — A<
o~ w8 2 VI A

8 /34

Multidimensional Scaling (MDS)

Given: data X = {z!,...,2V} C R?

Task: find embedding 3',...,y" C R™ that preserves pairwise distances
Aij = |l=* = 2’|

Solve, e.g., by gradient descent on

Jw) =Y (ly' =y I° - a})?

i<j

8 /34

Multidimensional Scaling (MDS)

Given: data X = {z%,...,2V} C R?

Task: find embedding 3, ...,y" C R™ that preserves pairwise distances
Aij = |l=* = 2|

Solve, e.g., by gradient descent on (normalized)

1 . .
J) ==z > (v =y I - 4a%)°

Zi<j A% i<y J
Derivative is given by:

9J(y) 2 k 7112 2 Yk —y
= — — A<
o = o, & 2 VI - A

Good starting positions: use first n PCA-projections

8 /34



Multidimensional Scaling (MDS)

MDS is equivalent to PCA for Euclidean distance

Although mathematically very different both methods yield the same result if
Euclidean distance is used:
Distance matrix A can be written as inner products (kernel matrix)

1 1 o
XT"X =—-HAH withH=1— =11
2 N

Thus we can rewrite the minimum of J as
argmin J(y) = argmin DD (@lay —yily)?
g

with solution: ¥ = A2V T with A: top n eigenvalues of X "X and V
corresponding eigenvalues, like in PCA.

But different distance metrics can be used.

9/34

MDS on head-pictures

2nd dimension
2nd dimension

1st dimension 1st dimension

MDS same as PCA up to sign

10 /34

MDS on head-pictures

MDS

2nd dimension

1st dimension

Todo:

10/ 34
Other methods for dimensionality reduction and manifold learning
Manifold Learning with 1000 points, 10 neighbors
LLE (0.17 sec) LTSA (0.37 sec) Hessian LLE (0.51 sec) Modified LLE (0.42 sec)
—wamm.ius@?p
write relation of methods
11 /34



Local Linear Embedding (LLE)

Assumes that data on a manifold

» Locally linear, i.e. each sample and its
neighbors lie on approximately linear
subspace

Idea:

1. approximate data by a bunch of linear
patches

2. glue patches together on a low
dimensional subspace s.t. neighborhood
relationships between patches are
preserved.

by S.Roweis and L.K. Saul, 2000

Local Linear Embedding (LLE) — Algorithm

1. identify nearest neighbors B; for each z;
(either fixed k or fixed radius €)

2. compute weights to best linearly S es o0 @ sektnchton
reconstruct x; from B; 9 ° x, o
°
° o
000 o o
o o

N
min E )
w
i=1

k 2
zi— ) :wiﬂBi(ﬁH
=1

@) Reconstruct with
linear weights

12 /34

13 /34

Local Linear Embedding (LLE) — Algorithm

1. identify nearest neighbors B; for each z;
(either fixed k or fixed radius €)

Local Linear Embedding (LLE) — Algorithm

1. identify nearest neighbors B; for each z;
(either fixed k& or fixed radius €)

2. compute weights to best linearly
reconstruct x; from B;

N k 2
“}jHE ‘xz -> :wiiji(j)H
i=1 j=1

3. Find low-dim embedding vector y; best
reconstructed by weights

N k 2
min o= S |

Jj=1

o
oo

@) Reconstruct with
linear weights

oo (@ Select neighbors

@) Reconstruct with
linear weights

13 /34

13 /34



Local Linear Embedding (LLE) — Algorithm (continued) Local Linear Embedding (LLE) — Algorithm (continued)

3. Find low-dim embedding vector y; best reconstructed by weights

N k )
m}jnz; ‘ Yi — Z;wiij,,(j)H
i= j=

3. Find low-dim embedding vector y; best reconstructed by weights

N k )
m}jnz; ‘ Yi — Z;wiij,(j)H
i= j=

Reformulated as: Reformulated as:

min Tr (YTyL) L={—-W)"(I-Ww) min Tr (YTYL) L={—-W)"(1-Ww)
Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =1 (scale)
constraint 2: Y. y; = 0 (origin at 0)

14 /34 14 /34
Local Linear Embedding (LLE) — Algorithm (continued) Local Linear Embedding (LLE) — Algorithm (continued)
3. Find low-dim embedding vector y; best reconstructed by weights 3. Find low-dim embedding vector y; best reconstructed by weights
N k 9 N k 9
myan; ‘ Yi — leiiji(j)H mYmZ; ‘ Yi — leiiji(j)H
i= Jj= i= Jj=

Reformulated as: Reformulated as:

min Tr Y'yL) L=1-w)"I-Ww) min Tr Y'YL) L=1-w)"I-Ww)

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =T (scale)
constraint 2: Y. y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues
Constraint 2 is satisfied if u associated with A = 0 is discarded

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =T (scale)
constraint 2: Y. y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues
Constraint 2 is satisfied if u associated with A = 0 is discarded

LLE is global dimensionality reduction while preserving local structure

14 /34 14 /34



Local Linear Embedding (LLE) — Example |

15 /34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)
Main Idea: Perform MDS on geodesic distances

17 /34

Local Linear Embedding (LLE) — Examples

LLE

2nd dimension
T

LLE (k=5): Coordinate 1: left-right orientation, 2: ~ up-down

.
1st dimension

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

16 /34

Geodesic:

shortest path on a manifold

17 /34



Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)
Main ldea: Perform MDS on geodesic distances

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)
Main ldea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

1. identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

17 /34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)
Main ldea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

1. identify nearest neighbors B; for each x;
(either fixed k& or fixed radius €)

2. compute pairwise geodesic distances: shortest paths in nearest neighbor
graph
3. perform MDS to preserve these distances
Remark: Different than nonlinear forms of PCA

17 /34

Geodesic: shortest path on a manifold

1. identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

2. compute pairwise geodesic distances: shortest paths in nearest neighbor
graph

17 /34

LLE vs Isomap

Anecdotal: both papers appeared in Science in the same issue!
Tenenbaum: “Our approach [Isomap], based on estimating and preserving global

geometry, may distort the local structure of the data. Their technique [LLE],
based only on local geometry, may distort the global structure,” he said.

18 /34



Isomap — Example

2nd dimension

1st dimension

Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down

19 /34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.
Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|3)

dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V].
Let s(7, 7, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 5,k +1)?

20 /34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.
Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|3)

dynamic programming solution that iteratively improves current estimates

20/ 34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.
Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|3)

dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V].
Let s(7, 7, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k + 1)?

1. a path using only vertices {1,...,k}
2. a path going from i to k 4+ 1 and from k& + 1 to j

20 /34



Isomap — Details

Step 2 of Isomap requires to find all shortest paths.
Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V]3)

dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V].
Let s(7, 7, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i,j,k+1)?
1. a path using only vertices {1,... ,k}
2. a path going from i to k 4+ 1 and from k& + 1 to j
s(i,j,k +1) =min ( s(i,5,k), s(i,k+1,k)+s(k+1,5,k))
Algorithm evaluates s(i, j, k) for all 4,j for k =1, then k =2,...,|V].

20/ 34

Floyd—Warshall algorithm
Reminder: s(i,j,k+1) = min ( s(i,j, k), s(i,k+1,k)+s(k+1,5k))

input V, w(u,v) (weight matrix)
slulv] = o0 Yu,v € [1,...,]V]] minimum distances so far
for each vertex v
s[v][v] + 0
for each edge (u,v)
slul[v] + w(u, v)

21 /34

Floyd—Warshall algorithm
Reminder: s(i,j,k+1) = min ( s(i,j, k), s(i,k+1,k)+s(k+1,5,k))

input V, w(u,v) (weight matrix)
slulv] = o0 Yu,v € [1,...,]V]] minimum distances so far

21 /34

Floyd—Warshall algorithm
Reminder: s(i,j,k+1) = min ( s(i,j, k), s(i,k+1,k)+s(k+1,5k))

input V, w(u,v) (weight matrix)

slul[v] = 0 Yu,v € [1,...,]V]] minimum distances so far
for each vertex v

s[v][v] <=0
for each edge (u,v)

slu][v] + w(u,v)
for k from 1 to |V]|

for i from 1 to |V|

for j from 1 to |V|
f slillj) > slil[k] + s{4]lj]
s[i][j] « s[i][k] + s[k][]

Visualization: https://www.cs.usfca.edu/"galles/visualization/Floyd.html

21 /34


https://www.cs.usfca.edu/~galles/visualization/Floyd.html
https://www.cs.usfca.edu/~galles/visualization/Floyd.html
https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Isomap

Advantages
» works for nonlinear data
> preserves global data structure
» performs global optimization
Disadvantages
» works best for swiss-roll type of structures
> not stable, sensitive to “noise” examples
» computationally expensive O(|V?)

22 /34

Autoencoder

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

Self-supervised learning
Input: = € R?

Output x

hidden layer z € R™ (n < d)
(bottleneck)

Encoder: z +— z
Decoder: z +— x

Trained to minimize
reconstruction error.

23 /34

Autoencoder

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

23 /34

Autoencoder

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

target: reconstruction Deep Autoencoder

Self-supervised learning r.
. d P,
InPUt' Te R * feature space
Output x -
hidden layer z € R" (n < d) g
(bottleneck) g
g

Encoder: z +— 2
DeCOdel’: 2T ) high-dimensional &

input: vector of pixel values

low-dimensional

Trained to minimize
reconstruction error.

23 /34



Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

(I ¢>( Zd: wijﬂﬁj)
j=1

1
@ o(z) = — sigmoid
1 2

X1 Xo X3

24 /34

Artificial Neural Networks — a short introduction

Delta Rule

Perform gradient descent in L: w! = w1 — ¢2£)

~ow

1

L
ﬂ'/g/ Wy W, \W3 i—1

X1 Xo X3

25 /34

Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

(I ¢( Zd: wz‘jﬂﬂj)
j=1

1
= sigmoid
ﬂvg o(2) gy igmoi
wy £y, RW3 0 .
1 2 Like in regression problems we use squared
X1 X5 X3 error:
N
1 N
L(w) = 3 z_; (i — yi)2

(plus regularization)

Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w! = w!™! — e%g”)

24 /34

25 /34



Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w! = w!™! — e%&”)

1 i=1
A 2 _ gy
ow N——
s
A — 768£(w)
ow
w:=w+ Aw

25 /34

Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation

Stack layers of neurons on top of each other.
&=J-y

N
AW!' = —¢> " 51 Diagle/ (z:)](} )T

input: z°, input of layer I: 2!~

Backpropagation of the error signal:
5t = (Wl+1)T51+1

26 /34

Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation
Stack layers of neurons on top of each other.

(%)

26 /34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Stochastic gradient descent (SGD)

Loss/Error is expected empirical error: sum over examples (batch)

SGD: update parameters on every
example:

N
AW! = —e X 6, Diagle' (z)] (z; ") "

7

Minibatches: average gradient over a .
small # of examples “iboo s00 0 500 71000 1500 2000

Advantages: many updates of parameters, noisier search helps to avoid flat
regions

27 /34



Artificial Neural Networks — a short introduction
Training: old and new tricks

Momentum
1(x) 4

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the mocthe

parameter-particle

oL
AW, = —¢ m(;t)

+ OéAWt,1

28 /34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Momentum
(x) 4

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the oot

parameter-particle

ow

AW, = —¢ + AWy

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

Adam (2014)

Rescale gradient for each parameter to unit size:

_ _ (VW)g,
We=Wir — < emmnm

with moving averages: (-)g

28 /34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Momentum
1(x) 4

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the mocthe

parameter-particle

oL
AW, = —¢ m(;t)

+ CtAWt,1

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

28 /34
Artificial Neural Networks — a short introduction
Training: old and new tricks
Derivative of sigmoid vanished for large 020
absolute input (saturation) o1s
For deep networks (many layers) o
» gradient vanishes “S
RelLU ) ) .
Use a simpler non-linearity:
— sigmoid
¢(Z) = n’]ax(o7 z) zo-l;T‘
CRelu: concatenate positive and negative o
=
#(z) = (max(0, z), — max(0, —z)) b
Unit-derivative everywhere
29 /34



Artificial Neural Networks — a short introduction

Trainability and more computer power
2 larger and deeper networks (>6 layers)

Breakthrough in performance in many ML applications
Vision, NLP, Speech,. ..

Convolutionary Network (CNN) — for vision

\es \
\ B \
N\ : \
A \& \ — e
= \ \ Ko \ Ko \\ R N
b— | | A Y ] L 1w 1 dense|  |dense|
5[ ‘r. 3 ‘\q 4 3 f**)] t 1M1
s - ; )
I 7 — = \ \ /
2 W \/ 2698 \ /
a8 oy i . 2 = / /=
\ Wi \ s w \ AA \
== R NS AR VAR AN
\ B - )] " " 3 l ] 31 ] ]
\ I \ I‘ 3] # \ \ = \ 2 dense’| [dense|
s \J AN \ \
\ 7 2 128 Max
Max 3 Max pooling Z0% Gan
poaling pooling
W
[Krizhevsky et al, Classification with Deep C ional Neural ", NIPS 2012]

30 /34

Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)

Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input &, target noise free x

Li=(¢(&:) —x)?

e
ROROO-—={00000) (©OO000)

-

32 /34

Back to Autoencoder

target: reconstruction

Deep Autoencoder

-
ORRRREX

feature space

gradient descent
identity

high-dimensional low-dimensional

input: vector of pixel values

Force a low-dimensional intermediate representation z, with which a good
reconstruction can be achieved

non-linear dimensionality reductions

But: need to know size of z and sometimes hard to train

31/34

Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)
Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010

Input: noise corrupted input Z, target noise free x

Li=(p(&;) —x)*
¥
. OCO0ON,  [w

RORO O (00000 D0000)

z

Stacking:

-~ < |I Jrsu'.
©00 ©OR-*©00 000  ©U0
i 3
ta W -

00000 00000 00000

32 /34



Stacked Denoising Autoencoder

Mnist: generation of samples

Stacked autoencoder:

M P! [3] [6] D61 I%) &1 [ 61 I8

N Eewe gL dwC

Sample generation:

Encode input

Bernoulli sampling in
latent state of each layer

weEevepdLodwC
NEFeVH LR LIWD

OO0}~

00)

Stacked denoising

\

|Qe"

autoencoder:

3]
Kl E
33|z
||+
A
=Y X
2|a]2
FAA P
gl
71717

5] [5] [¢)
31313
b kA S
oA
|#|=
5157157
a212]2
&l é)é
Ll A2 A
71217

—= Encoding
————— ~ Sampling
— Decoding

©0 [©O-{00

9o’
(GO0}
Je

00000

X

Manifold learning and dimensionality reduction

Summary:
Linear methods are quite useful already (PCA etc.)

For nonlinear methods: Isomap and autoencoders are the most useful
methods

Dimensionality reduction is important for:
data visualization
representation learning

generative models

33/ 34

34 /34



