Machine Learning for Robotics Intelligent Systems Series Lecture 5

Georg Martius

MPI for Intelligent Systems, Tübingen, Germany

May 22, 2017

Unsupervised Learning Dimensionality Reduction – continued

1/34 2/34

Dimensionality Reduction - reminder

Given: data

$$X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$$

Dimensionality Reduction – Transductive

Task: Find a lower-dimensional representation

$$Y = \{y^1, \dots, y^N\} \subset \mathbb{R}^n$$

with $n \ll d$, such that Y "represents X well"

Dimensionality Reduction – Inductive

Task: find a function $\phi: \mathbb{R}^d \to \mathbb{R}^n$ and set $y_i = \phi(x_i)$

(allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Dimensionality Reduction - Overview

Optimizing a cost for parametric transformations:

Model "represents X well" as a cost function and optimize for it.

For instance minimize: $\sum_{i=1}^N \|x_i - \psi(y_i)\|^2 \quad \text{ where } y = \phi(x_i), \phi: \mathbb{R}^d \to \top^n$ and $\psi: \mathbb{R}^n \to \mathbb{R}^d$.

3/34 4/34

Dimensionality Reduction – Overview

Optimizing a cost for parametric transformations:

Model "represents X well" as a cost function and optimize for it.

For instance minimize: $\sum_{i=1}^N \|x_i - \psi(y_i)\|^2 \quad \text{ where } y = \phi(x_i), \phi: \mathbb{R}^d \to \top^n$ and $\psi: \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

4/34

Dimensionality Reduction – Overview

Optimizing a cost for parametric transformations:

Model "represents X well" as a cost function and optimize for it.

For instance minimize: $\sum\limits_{i=1}^{N}\|x_i-\psi(y_i)\|^2$ where $y=\phi(x_i),\phi:\mathbb{R}^d o o^n$ and $\psi: \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

Optimizing a Cost for non-parametric transformations:

For instance minimize: $\sum_{i=1,\,i=1}^N \|\|x_i-x_j\|^2 - \|y_i-y_j\|^2\|^2 \quad \text{ where } y \in \mathbb{R}^n.$

Multidimensional Scaling, Local linear Embedding, Isomap

Dimensionality Reduction - Overview

Optimizing a cost for parametric transformations:

Model "represents X well" as a cost function and optimize for it.

For instance minimize: $\sum\limits_{i=1}^{N}\|x_i-\psi(y_i)\|^2$ where $y=\phi(x_i),\phi:\mathbb{R}^d\to \top^n$ and $\psi: \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

Optimizing a Cost for non-parametric transformations:

For instance minimize:
$$\sum_{i=1,j=1}^N \|\|x_i-x_j\|^2 - \|y_i-y_j\|^2\|^2 \quad \text{ where } y \in \mathbb{R}^n.$$

4/34

Principal Component Analysis (PCA) (reminder)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$
 (PCA)

Solution: $U = (u_1|u_2|\cdots|u_n)$ and $W = U^{\top}$ with u_1,\ldots,u_n : eigenvectors (with largest eigenvalues) of correlation/covariance matrix cov(X).

Principal Component Analysis (PCA) (reminder)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2 \tag{PCA}$$

Solution: $U = (u_1|u_2|\cdots|u_n)$ and $W = U^{\top}$ with u_1, \ldots, u_n : eigenvectors (with largest eigenvalues) of correlation/covariance matrix cov(X).

PCA

5/34

Principal Component Analysis Example

Images: 64×64 Dim: n = 4096Number: N = 698

Different head orientations.

PCA analysis does not correspond to orientation

6/34

Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} . Kernel trick (reformulation by inner products): use Eigenvalues of $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

Kernel trick (reformulation by inner products):

use Eigenvalues of $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

7/34 7/34

Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

Kernel trick (reformulation by inner products):

use Eigenvalues of $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness

7/34

Multidimensional Scaling (MDS)

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1,\ldots,y^N\subset\mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij}=\|x^i-x^j\|.$

Solve, e.g., by gradient descent on (normalized)

$$J(y) = \frac{1}{\sum_{i < j} \Delta_{ij}^2} \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Derivative is given by:

$$\frac{\partial J(y)}{\partial y_k} = \frac{2}{\sum_{i < j} \Delta_{ij}^2} \sum_{j \neq k} (\|y^k - y^j\|^2 - \Delta_{kj}^2) \frac{y^k - y^j}{\Delta_{kj}}$$

Multidimensional Scaling (MDS)

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1,\ldots,y^N\subset\mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij}=\|x^i-x^j\|.$

Solve, e.g., by gradient descent on

$$J(y) = \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

8/34

Multidimensional Scaling (MDS)

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1,\ldots,y^N\subset\mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij}=\|x^i-x^j\|.$

Solve, e.g., by gradient descent on (normalized)

$$J(y) = \frac{1}{\sum_{i < j} \Delta_{ij}^2} \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Derivative is given by:

$$\frac{\partial J(y)}{\partial y_k} = \frac{2}{\sum_{i < j} \Delta_{ij}^2} \sum_{j \neq k} (\|y^k - y^j\|^2 - \Delta_{kj}^2) \frac{y^k - y^j}{\Delta_{kj}}$$

Good starting positions: use first n PCA-projections

Multidimensional Scaling (MDS)

MDS is equivalent to PCA for Euclidean distance

Although mathematically very different both methods yield the same result if Euclidean distance is used:

Distance matrix Δ can be written as inner products (kernel matrix)

$$\boldsymbol{X}^{\top}\boldsymbol{X} = -\frac{1}{2}\boldsymbol{H}\Delta\boldsymbol{H} \quad \text{with } \boldsymbol{H} = \mathbb{I} - \frac{1}{N}\vec{\mathbf{1}}\vec{\mathbf{1}}^{\top}$$

Thus we can rewrite the minimum of J as

$$\operatorname*{argmin}_{Y} J(y) = \operatorname*{argmin}_{Y} \sum_{i} \sum_{j} (x_{i}^{\top} x_{j} - y_{i}^{\top} y_{j})^{2}$$

with solution: $Y = \Lambda^{1/2} V^{\top}$ with Λ : top n eigenvalues of $X^{\top} X$ and V corresponding eigenvalues, like in PCA.

But different distance metrics can be used.

MDS on head-pictures

10 / 34

MDS on head-pictures

9/34

MDS same as PCA up to sign

Other methods for dimensionality reduction and manifold learning

write relation of methods

Todo:

10/34 11/34

Local Linear Embedding (LLE)

- Assumes that data on a manifold **Delta Locally linear**, i.e. each sample and its neighbors lie on approximately linear subspace
- Idea:
 - 1. approximate data by a bunch of linear patches
 - 2. glue patches together on a low dimensional subspace s.t. neighborhood relationships between patches are preserved.

by S.Roweis and L.K. Saul, 2000

12/34

Local Linear Embedding (LLE) - Algorithm

- 1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- 2. compute weights to best linearly reconstruct x_i from B_i

$$\min_{w} \sum_{i=1}^{N} \left\| x_i - \sum_{j=1}^{k} w_{ij} x_{B_i(j)} \right\|^2$$

Local Linear Embedding (LLE) - Algorithm

1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)

13 / 34

Local Linear Embedding (LLE) - Algorithm

- 1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- 2. compute weights to best linearly reconstruct x_i from B_i

$$\min_{w} \sum_{i=1}^{N} \left\| x_i - \sum_{j=1}^{k} w_{ij} x_{B_i(j)} \right\|^2$$

3. Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{i=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

13 / 34 13 / 34

Local Linear Embedding (LLE) - Algorithm (continued)

3. Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{V} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

14/34

Local Linear Embedding (LLE) - Algorithm (continued)

3. Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{Y} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)
- minimize only with constraint 1:
- ightharpoonup rows of Y are Eigenvalues of L associated with **smallest** Eigenvalues
- Constraint 2 is satisfied if u associated with $\lambda = 0$ is discarded

Local Linear Embedding (LLE) - Algorithm (continued)

3. Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{Y} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)

14 / 34

Local Linear Embedding (LLE) – Algorithm (continued)

3. Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{Y} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)
- minimize only with constraint 1:
 - ightharpoonup rows of Y are Eigenvalues of L associated with **smallest** Eigenvalues
- Constraint 2 is satisfied if u associated with $\lambda=0$ is discarded

LLE is global dimensionality reduction while preserving local structure

Local Linear Embedding (LLE) – Example I

15/34 16/34

Isomap - Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Local Linear Embedding (LLE) – Examples

LLE (k=5): Coordinate 1: left-right orientation, 2: \sim up-down

on of MDS Isomap – Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

17/34 17/34

Isomap - Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)

17/34 17/34

Isomap – Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

 $\label{eq:main_loss} \mbox{Main Idea: Perform MDS on geodesic distances}$

Geodesic: shortest path on a manifold

- 1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- 2. compute pairwise geodesic distances: shortest paths in nearest neighbor graph
- 3. perform MDS to preserve these distances

Remark: Different than nonlinear forms of PCA

Isomap - Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

- 1. identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- compute pairwise geodesic distances: shortest paths in nearest neighbor graph

LLE vs Isomap

Anecdotal: both papers appeared in Science in the same issue!

Tenenbaum: "Our approach [Isomap], based on estimating and preserving global geometry, may distort the local structure of the data. Their technique [LLE], based only on local geometry, may distort the global structure," he said.

17/34 18/34

Isomap - Example

Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down

19/34

Isomap - Details

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

20 / 34

Isomap - Details

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1, \ldots, |V|$. Let s(i, j, k) denote the shortest path from i to j using vertices $\{1, \ldots, k\}$

What is s(i, j, k+1)?

Isomap – Details

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1, \ldots, |V|$. Let s(i, j, k) denote the shortest path from i to j using vertices $\{1, \ldots, k\}$

What is
$$s(i, j, k+1)$$
?

- **1.** a path using only vertices $\{1,\ldots,k\}$
- **2.** a path going from i to k+1 and from k+1 to j

20/34 20/34

Isomap - Details

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- ullet finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1, \ldots, |V|$. Let s(i, j, k) denote the shortest path from i to j using vertices $\{1, \ldots, k\}$

What is
$$s(i, j, k + 1)$$
?

- **1.** a path using only vertices $\{1, \ldots, k\}$
- **2.** a path going from i to k+1 and from k+1 to j

$$s(i, j, k+1) = \min(s(i, j, k), s(i, k+1, k) + s(k+1, j, k))$$

Algorithm evaluates s(i, j, k) for all i, j for k = 1, then $k = 2, \dots, |V|$.

20 / 34

Floyd-Warshall algorithm

Reminder:
$$s(i, j, k + 1) = \min(s(i, j, k), s(i, k + 1, k) + s(k + 1, j, k))$$

$$\begin{split} & \text{input } V, \, w(u,v) \qquad \text{(weight matrix)} \\ & s[u][v] = \infty \qquad \forall u,v \in [1,\ldots,|V|] \qquad \text{minimum distances so far} \\ & for each vertex \ v \\ & s[v][v] \leftarrow 0 \\ & \text{for each edge} \ (u,v) \\ & s[u][v] \leftarrow w(u,v) \end{split}$$

Floyd-Warshall algorithm

 $s[u][v] = \infty \qquad \forall u, v \in [1, \dots, |V|]$

```
Reminder: s(i,j,k+1) = \min \left( \ s(i,j,k), \quad s(i,k+1,k) + s(k+1,j,k) \ \right) input V, \ w(u,v) (weight matrix)
```

minimum distances so far

34 21/34

Floyd-Warshall algorithm

```
Reminder: s(i,j,k+1) = \min \left( \ s(i,j,k), \quad s(i,k+1,k) + s(k+1,j,k) \ \right) input V, \ w(u,v) (weight matrix) s[u][v] = \infty \quad \forall u,v \in [1,\ldots,|V|] \qquad \text{minimum distances so far for each vertex } v s[v][v] \leftarrow 0 \qquad \text{for each edge } (u,v) \qquad s[u][v] \leftarrow w(u,v) \qquad \text{for } k \text{ from } 1 \text{ to } |V| \qquad \text{for } i \text{ from } 1 \text{ to } |V| \qquad \text{if } s[i][j] > s[i][k] + s[k][j] \qquad s[i][j] \leftarrow s[i][k] + s[k][j]
```

Visualization: https://www.cs.usfca.edu/~galles/visualization/Floyd.html

21/34 21/34

Isomap

- Advantages
 - works for nonlinear data
 - preserves global data structure
 - performs global optimization
- Disadvantages
 - works best for swiss-roll type of structures
 - ▶ not stable, sensitive to "noise" examples
 - computationally expensive $O(|V^3|)$

Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

22/34 23/34

Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

Self-supervised learning

 $\begin{array}{l} \text{Input: } x \in \mathbb{R}^d \\ \text{Output } x \end{array}$

hidden layer $z \in \mathbb{R}^n \ (n < d)$

(bottleneck)

Encoder: $x \mapsto z$ Decoder: $z \mapsto x$

Trained to minimize reconstruction error.

Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

Self-supervised learning

Input: $x \in \mathbb{R}^d$ Output x

hidden layer $z \in \mathbb{R}^n \ (n < d)$

(bottleneck) Encoder: $x \mapsto z$

Decoder: $z \mapsto x$ Trained to minimize

reconstruction error.

23/34 23/34

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

$$\hat{y}_i = \phi \left(\sum_{j=1}^d w_{ij} x_j \right)$$

$$\phi(z) = \frac{1}{1 + e^{-z}} \qquad \text{sigmoi}$$

24 / 34

Artificial Neural Networks - a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

$$\hat{y}_i = \phi \Big(\sum_{j=1}^d w_{ij} x_j \Big)$$

$$\phi(z) = \frac{1}{1 + e^{-z}} \qquad \text{sigmoid}$$

Like in regression problems we use squared error:

$$\mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

(plus regularization)

24 / 34

Artificial Neural Networks - a short introduction

Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Artificial Neural Networks - a short introduction

Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$

Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \underbrace{(\hat{y} - y)}_{\delta} \phi'(z) x$$

$$\Delta w = -\epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$$

$$w := w + \Delta w$$

Artificial Neural Networks – a short introduction

Multilayer Network - Backpropagation

Stack layers of neurons on top of each other.

$$\hat{y} = \dots \phi^2(W^2 \phi(W^2 x))$$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

25 / 34 26 / 34

Artificial Neural Networks - a short introduction

Multilayer Network - Backpropagation

Stack layers of neurons on top of each other.

$$\hat{y} = \dots \phi^2(W^2 \phi(W^2 x))$$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Delta W^l = -\epsilon \sum_i^N \delta_i^{l+1} \mathrm{Diag}[\phi'(z_i)](x_i^{l-1})^\top$$

input: x^0 , input of layer l: x^{l-1} .

Backpropagation of the error signal: $\delta^l = (W^{l+1})^\top \delta^{l+1}$

Artificial Neural Networks – a short introduction

Training: old and new tricks

Stochastic gradient descent (SGD)

- Loss/Error is expected empirical error: sum over examples (batch)
- SGD: update parameters on every example:

Advantages: many updates of parameters, noisier search helps to avoid flat regions

Training: old and new tricks

Momentum

Speed up gradient descent

 Momentum: add a virtual mass to the parameter-particle

$$\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$$

28 / 34

Advantages: may avoids some local minima, faster on ragged surfaces Disadvantages: another hyperparameter, may overshoot

Artificial Neural Networks - a short introduction

Speed up gradient descent

Momentum: add a virtual mass to the

 $\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$

Training: old and new tricks

parameter-particle

Momentum

28 / 34

Smoother

Artificial Neural Networks - a short introduction

Training: old and new tricks

Momentum

Speed up gradient descent

 Momentum: add a virtual mass to the parameter-particle

$$\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$$

Advantages: may avoids some local minima, faster on ragged surfaces Disadvantages: another hyperparameter, may overshoot

Adam (2014)

Rescale gradient for each parameter to unit size:

$$W_t = W_{t-1} - \epsilon \frac{\langle \nabla W \rangle_{\beta_1}}{\sqrt{\langle (\nabla W)^2 \rangle_{\beta_2} + \lambda}}$$
 with moving averages: $\langle \cdot \rangle_{\beta}$

Artificial Neural Networks - a short introduction

Training: old and new tricks

- For deep networks (many layers)
 - gradient vanishes

ReLU

Use a simpler non-linearity:

$$\phi(z) = \max(0, z)$$

CRelu: concatenate positive and negative

$$\phi(z) = (\max(0, z), -\max(0, -z))$$

Unit-derivative everywhere

- Trainability and more computer power
- → larger and deeper networks (>6 layers)
- Breakthrough in performance in many ML applications Vision, NLP, Speech,...

Convolutionary Network (CNN) – for vision

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]

30 / 34

Back to Autoencoder

- \bullet Force a low-dimensional intermediate representation z, with which a good reconstruction can be achieved
- non-linear dimensionality reductions
- ullet But: need to know size of z and sometimes hard to train

31 / 34

Stacked Denoising Autoencoder

- Idea 1: use a large z but regularize (easier to train)
- ullet Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010

Input: noise corrupted input \hat{x} , target noise free x

$$\mathcal{L}_i = (\phi(\hat{x}_i) - x_i)^2$$

Stacked Denoising Autoencoder

- Idea 1: use a large z but regularize (easier to train)
- Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010

Input: noise corrupted input $\hat{\boldsymbol{x}}$, target noise free \boldsymbol{x}

$$\mathcal{L}_i = (\phi(\hat{x}_i) - x_i)^2$$

Stacking:

Stacked Denoising Autoencoder

Mnist: generation of samples

Stacked autoencoder:

Sample generation:

- Encode input
- Bernoulli sampling in latent state of each layer

Stacked denoising autoencoder:

Manifold learning and dimensionality reduction

Summary:

- Linear methods are quite useful already (PCA etc.)
- For nonlinear methods: Isomap and autoencoders are the most useful methods

Dimensionality reduction is important for:

- data visualization
- representation learning
- generative models

33/34 34/34