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Unsupervised Learning
Dimensionality Reduction — continued
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Dimensionality Reduction — reminder

Given: data

X={a ..., 2N} CR?

Dimensionality Reduction — Transductive

Task: Find a lower-dimensional representation

Y={y',...,y"}CR"
with n < d, such that Y “represents X well”

Dimensionality Reduction — Inductive

Task: find a function ¢ : R? — R™ and set y; = ¢(x;)

(allows computing ¢(z) for x # X: "out-of-sample extension")
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Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
N

For instance minimize: > ||z — ¥(v:)||? where y = ¢(x;), ¢ : RT — T"
i=1

and ¢ : R» — R%.
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Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*>  where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and : Autoencoder
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Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*>  where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)

for neural networks for ¢: Selforganizing Maps (SOM)
for neural networks for ¢, and : Autoencoder

Optimizing a Cost for non-parametric transformations:

N
For instance minimize: o i = 25l1% = llys — g lI°1° where y € R™.
i=1j=1
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Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*>  where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and : Autoencoder

Optimizing a Cost for non-parametric transformations:

N
For instance minimize: o i = 25l1% = llys — g lI°1° where y € R™.
i=1j=1

Multidimensional Scaling, Local linear Embedding, Isomap
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Principal Component Analysis (PCA) (reminder)

N
UW = argmin Z |z, — UWa||? (PCA)
UeRnxd,WeRdxn 577

Solution: U = (u1|uz| e \un) and W =UT with uq,...,un,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).
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Principal Component Analysis (PCA) (reminder)

N
UW = argmin Z |z, — UWa||? (PCA)
UeRnxd,WeRdxn 577

Solution: U = (u1|uz| e \un) and W =UT with uq,...,un,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).
Data PCA
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Principal Component Analysis Example

Hs
Images: 64 x 64 E =

Dim: n = 4096
Number: N = 698

Different head

orientations. E o 1

2nd dimension

1st dimension

PCA analysis does not correspond to orientation
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Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space .
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(xi, x;)
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Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(x;, ;)

Kernel PCA
|
P
Ry =

-

2nd dimension

L.

I
1st dimension
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Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(x;, ;)

Kernel PCA
|
Iy
Ry =

2nd dimension

L
1st dimension

Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness
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Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} C R?

Task: find embedding y',...,4" C R™ that preserves pairwise distances
Aij = [Ja" —27].

Solve, e.g., by gradient descent on

Ty =Y (ly' =y I° - A})?

i<J

Georg Martius Machine Learning for Robotics May 22, 2017 8 / 34



Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} Cc R?

Task: find embedding #',...,y"Y C R™ that preserves pairwise distances
Aij = [lz* = a7]].

Solve, e.g., by gradient descent on (normalized)

J(y) = Z sz > (' =vI? - Ay)?
1<j ” 1<J
Derivative is given by:

9J(y) 112 2 Zlk - le
= Ily* — 7[> — AF))
8yk ZZ<] %j ; ki Ak.]
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Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} Cc R?

Task: find embedding #',...,y"Y C R™ that preserves pairwise distances
Aij = [lz* = a7]].

Solve, e.g., by gradient descent on (normalized)

J(y) = Z sz > (' =vI? - Ay)?
1<j ” 1<J
Derivative is given by:

9J(y) 112 2 Zlk - le
= Ily* — 7[> — AF))
ayk ZZ<] %j ; ki Ak.]

Good starting positions: use first n PCA-projections
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Multidimensional Scaling (MDS)

MDS is equivalent to PCA for Euclidean distance

Although mathematically very different both methods yield the same result if
Euclidean distance is used:
Distance matrix A can be written as inner products (kernel matrix)

1 1 e
XTX = —iHAH with H =1 — Nll

Thus we can rewrite the minimum of J as
argmin J(y) = argmin DY (@l w—yly)?
i g

with solution: ¥ = A2V T with A: top n eigenvalues of X' X and V
corresponding eigenvalues, like in PCA.

But different distance metrics can be used.
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MDS on head-pictures

MDS

2nd dimension

1st dimension
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MDS on head-pictures

MDS same as PCA up to sign
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Other methods for dimensionality reduction and manifold learning

Manifold Learning with 1000 points, 10 neighbors

LLE (0.17 sec) LTSA (0.37 sec) Hessian LLE (0.51 sec) Modified LLE (0.42 sec)
3
2
1
0
-1
-2
= -3
-13060.5 Q.i&@i
Isomap (0.47 sec) MDS (2.3 sec) SpectralEmbedding (0.21 sec) t-SNE (3.6 sec)
£
Tod:
write relation of methods

Georg Martius
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Local Linear Embedding (LLE)

> Locally linear, i.e. each sample and its =%
neighbors lie on approximately linear
subspace

Assumes that data on a manifold : t\l'_ V : ((

Idea:

@ approximate data by a bunch of linear
patches

© glue patches together on a low
dimensional subspace s.t. neighborhood
relationships between patches are
preserved.

by S.Roweis and L.K. Saul, 2000
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Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

o ‘; % (@ Select neighbors
o o-2-___
o © X B
o
o ® o
o
00° o o
o o

@) Reconstruct with
linear weights

Georg Martius

Machine Learning for Robotics

May 22, 2017 13 / 34



Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute weights to best linearly . 0o %0 o Osdectncighbors
reconstruct x; from B;

o-=-_

o B )
° 5 xb o
o
N k 9 00 ° °, Z
ming x»—g Wi TR, (5
w ‘ ? 7 Bz(])H @) Reconstruct with
i=1 j=1

linear weights
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Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute weights to best linearly . 0o %0 o Osdectncighbors
reconstruct x; from B;

o-=-_

o o IS
° 5 xb o )
o
N k 2 %0 ° . g
ming x‘—g Wi T B, (j
w ‘ ? 7 Bz(])H @) Reconstruct with
i=1 j=1

linear weights
@ Find low-dim embedding vector y; best
reconstructed by weights

N
min g ’
Y
i=1

k
2
Yi — Z WiiYB,(5) H
j=1
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Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:

min Tr (YTyrL) L=O-W)"(1-W)
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Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.

constraint 1: Y'Y =1 (scale)
constraint 2: ). y; = 0 (origin at 0)
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Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =1 (scale)
constraint 2: ). y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues

Constraint 2 is satisfied if u associated with A = 0 is discarded
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Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =1 (scale)
constraint 2: ). y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues

Constraint 2 is satisfied if u associated with A = 0 is discarded

LLE is global dimensionality reduction while preserving local structure
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Local Linear Embedding (LLE) — Example |
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Local Linear Embedding (LLE) — Examples

LLE

2nd dimension
T

1st dimension

LLE (k=5): Coordinate 1: left-right orientation, 2: ~ up-down
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Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances
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Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold
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Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)
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Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute pairwise geodesic distances: shortest paths in nearest neighbor
graph
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Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute pairwise geodesic distances: shortest paths in nearest neighbor
graph
@ perform MDS to preserve these distances

Remark: Different than nonlinear forms of PCA
Georg Martius Machine Learning for Robotics May 22, 2017
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LLE vs Isomap

Anecdotal: both papers appeared in Science in the same issue!

Tenenbaum: “Our approach [Isomap], based on estimating and preserving global
geometry, may distort the local structure of the data. Their technique [LLE],
based only on local geometry, may distort the global structure,” he said.
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Isomap — Example

Isomap

2nd dimension

1st dimension

Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down
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Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)

dynamic programming solution that iteratively improves current estimates

Georg Martius Machine Learning for Robotics
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Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)
dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?
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Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)
dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?

@ a path using only vertices {1, ..., k}
@ a path going from i to k + 1 and from k& + 1 to j

Georg Martius Machine Learning for Robotics May 22, 2017 20 / 34



Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)

dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?

@ a path using only vertices {1, ..., k}
@ a path going from i to k + 1 and from k& + 1 to j
s(i,j,k+ 1) =min ( s(i,5,k), s(i,k+1,k)+s(k+1,5k))
Algorithm evaluates s(i, j, k) for all 4,5 for k =1, then k =2,...,|V].
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Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min ( s(i, 4, k), s(i,k+1,k)+s(k+1,j,k) )

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far
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https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min ( s(i, 4, k), s(i,k+1,k)+s(k+1,j,k) )

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far
for each vertex v
s[v][v] 0

for each edge (u,v)
s[ul[v] < w(u, v)

Georg Martius Machine Learning for Robotics May 22, 2017 21 / 34


https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min ( s(i, 4, k), s(i,k+1,k)+s(k+1,j,k) )

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far
for each vertex v
s[v][v] 0

for each edge (u,v)
s[u][v] + w(u,v)
for k from 1 to |V|
for ¢ from 1 to |V|
for j from 1 to |V/|
if s[2][j] > s[d][k] + s[k][j]
s[i][4] = sld][k] + s[k][]

Visualization: https://www.cs.usfca.edu/ galles/visualization/Floyd.html
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https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Advantages
o works for nonlinear data
o preserves global data structure
o performs global optimization
Disadvantages
o works best for swiss-roll type of structures
@ not stable, sensitive to “noise” examples
o computationally expensive O(|V?)
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Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation
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Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

Self-supervised learning

Input: = € R¢

Output z

hidden layer z € R" (n < d)
(bottleneck)

Encoder: z — 2z
Decoder: z —

Trained to minimize
reconstruction error.
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Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

= . target: reconstruction Deep Autoencoder
Self-supervised learning °
-

Input: 2 € R¢
feature space
Output z =
hidden layer z € R™ (n < d) g
(bottleneck) £
:
Encoder: z — z )

low-dimensional

. high-dimensional
Decoder: z — _ Q v

input: vector of pixel values

Trained to minimize
reconstruction error.
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Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

i = ¢( zd: wij$j>
=1

1

o(z) = ——— sigmoid
1 =7
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Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

j=1
1

@ o(z) = —— sigmoid
1 =7
Ag Wy Wy \W3 aF @

Like in regression problems we use squared
error:

1
D3

(plus regularization)

(\o}
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Artificial Neural Networks — a short introduction

Delta Rule

Perform gradient descent in L: w* = w!=! — 6%

4
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Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w* = w!=! — 6%
| X
_ 1 Y
£0) = 53 i w)
2 _ (5o (a)e
5

4
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Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w* = w!=! — 6%
| X
_1 L2
£0) = 53 i w)
2 _ (5o (a)e
5
Aw = —eaﬁ(w)
ow
w:=w + Aw

4
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Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation

Stack layers of neurons on top of each other.
¢?(x)
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Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation

Stack layers of neurons on top of each other.

:
input: 20, input of layer [: z!~1.

Backpropagation of the error signal:
5t = (Wl-&-l)'l'(sl-&-l
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Artificial Neural Networks — a short introduction
Training: old and new tricks

Stochastic gradient descent (SGD)

Loss/Error is expected empirical error: sum over examples (batch)

SGD: update parameters on every
example:

N
AW = —eX 6/ Diagl¢! (2:)] (=17 T

Minibatches: average gradient over a .
. N
small # of examples o0 500 0 500 1000

1500 2000

<

Advantages: many updates of parameters, noisier search helps to avoid flat
regions
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Artificial Neural Networks — a short introduction
Training: old and new tricks

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

aL(xt)

A =]
Wi oW

+ AW,

=
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Artificial Neural Networks — a short introduction
Training: old and new tricks

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

aL(xt)

A =]
Wi oW

+ AW,

=

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot
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Artificial Neural Networks — a short introduction
Training: old and new tricks

Momentum

(x) A

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

8L(xt)

A =]
Wi oW

+ AW,

=

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

Adam (2014)

Rescale gradient for each parameter to unit size:

W, =W,_1 — e#ﬁ‘;;“ with moving averages: (-)g
2
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Artificial Neural Networks — a short introduction

Training: old and new tricks

— sigmoid’

Derivative of sigmoid vanished for large
absolute input (saturation)

For deep networks (many layers)
» gradient vanishes

Use a simpler non-linearity:

¢(z) = max(0, z) =]

15

CRelu: concatenate positive and negative

¢(z) = (max(0, z), — max(0, —z)) -

Unit-derivative everywhere

4
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Artificial Neural Networks — a short introduction

Trainability and more computer power
> larger and deeper networks (>6 layers)

Breakthrough in performance in many ML applications
Vision, NLP, Speech,. ..

Convolutionary Network (CNN) — for vision

\13 v [Nz N e
= \ [\ \ |
f % 13
\ A " 27 N r“ Ly P 23 dense| [dense]
I ) — l p P |'
=N A
1ty \ . \ i 3 | | A
B N | — A L] a7 28 = ik \dense
v \ 3 18 : s i
55 X '
—— 5\ \ay 13 13 \ )
1 I M . | EE—y/ 9
224 s A 3 |‘ a 3 .[ 3]| f | ] ]
L = |- EN 14;] = | 13 dense| jdons
N fss |l :] X \ | B
AV \ e 192 T8 Max
3 G
28% S eride, Max 128 Max pooling 2% i
Yot a poaling pooling
3 W

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]
y
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Back to Autoencoder

target: reconstruction Deep Autoencoder

feature space

gradient descent

high-dimensional low-dimensional

input: vector of pixel values

Force a low-dimensional intermediate representation z, with which a good
reconstruction can be achieved

non-linear dimensionality reductions

But: need to know size of z and sometimes hard to train
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Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)
Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input Z, target noise free x

L= (&) — x;)°

Lyix,z)
fa VTR
N
\\
o ———
XOXOOle™ (O O QO O] 01010]10]0)
% z
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Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)
Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input Z, target noise free x

Li = (¢(&:) — i)

¥

(elele)
g
PR
N

fo

.

.

EOXOO)e [O00C0C0) (CCOO0)]
X

X

Stacking:

(e]e]e)

(0]0]0]0]0))
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Stacked Denoising Autoencoder

Mnist: generation of samples

Stacked autoencoder Stacked denoising

Ol¢ autoencoder:
3| NWHEREEEEEE
NE HEEEEREEEEE
o slz|3|z]z]3]2]3]e|
=1 = o of Ld B B Gl Bl G
-3 '?—‘ ?‘ ';L'.}'Z'J’;';_
al: & 5 s1515)1515) 5
é P P 2122|221 a]2
NE (1 & clélélelé)é
1 B 1 Bl Bi K1 K1 R Kl B K K
vl v il d vl d d W ed Vi

= \ —= Encoding

)\/} ﬁgJC SR R - Sampling

. , — Decodin

Sample generation: fy |9 9

(OO [CCH{CO)

Encode input

Bernoulli sampling in
latent state of each layer

Georg Martius Machine Learning for Robotics May 22, 2017 33 / 34



Manifold learning and dimensionality reduction

Summary:
Linear methods are quite useful already (PCA etc.)

For nonlinear methods: Isomap and autoencoders are the most useful
methods

Dimensionality reduction is important for:
data visualization
representation learning

generative models
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