Machine Learning for Robotics Intelligent Systems Series Lecture 5

Georg Martius

MPI for Intelligent Systems, Tübingen, Germany

May 22, 2017

Unsupervised Learning Dimensionality Reduction – continued

Dimensionality Reduction – reminder

Given: data

$$X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$$

Dimensionality Reduction – Transductive

Task: Find a lower-dimensional representation

$$Y = \{y^1, \dots, y^N\} \subset \mathbb{R}^n$$

with $n \ll d$, such that Y "represents X well"

Dimensionality Reduction - Inductive

Task: find a function $\phi: \mathbb{R}^d \to \mathbb{R}^n$ and set $y_i = \phi(x_i)$

(allows computing $\phi(x)$ for $x \neq X$: "out-of-sample extension")

Dimensionality Reduction - Overview

Optimizing a cost for parametric transformations:

Model "Y represents X well" as a cost function and optimize for it.

For instance minimize:
$$\sum_{i=1}^{N} \|x_i - \psi(y_i)\|^2$$
 where $y = \phi(x_i), \phi : \mathbb{R}^d \to \mathbb{T}^n$

and $\psi: \mathbb{R}^n \to \mathbb{R}^d$.

Dimensionality Reduction - Overview

Optimizing a cost for parametric transformations:

Model "Y represents X well" as a cost function and optimize for it.

For instance minimize:
$$\sum_{i=1}^{N} \|x_i - \psi(y_i)\|^2 \quad \text{ where } y = \phi(x_i), \phi : \mathbb{R}^d \to \mathbb{T}^n$$
 and $\psi : \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

Dimensionality Reduction – Overview

Optimizing a cost for parametric transformations:

Model "Y represents X well" as a cost function and optimize for it.

For instance minimize:
$$\sum_{i=1}^{N} \|x_i - \psi(y_i)\|^2 \quad \text{ where } y = \phi(x_i), \phi : \mathbb{R}^d \to \mathbb{T}^n$$
 and $\psi : \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

Optimizing a Cost for non-parametric transformations:

For instance minimize: $\sum_{i=1, i-1}^{N} \|\|x_i - x_j\|^2 - \|y_i - y_j\|^2\|^2 \quad \text{ where } y \in \mathbb{R}^n.$

Dimensionality Reduction – Overview

Optimizing a cost for parametric transformations:

Model "Y represents X well" as a cost function and optimize for it.

For instance minimize:
$$\sum_{i=1}^{N} \|x_i - \psi(y_i)\|^2 \quad \text{ where } y = \phi(x_i), \phi : \mathbb{R}^d \to \mathbb{T}^n$$
 and $\psi : \mathbb{R}^n \to \mathbb{R}^d$.

- for linear ϕ, ψ : Principal Component Analysis (PCA)
- for kernelized ϕ : Kernel Principal Component Analysis (KPCA)
- for neural networks for ϕ : Selforganizing Maps (SOM)
- for neural networks for ϕ , and ψ : Autoencoder

Optimizing a Cost for non-parametric transformations:

For instance minimize: $\sum_{i=1,j=1}^N \|\|x_i-x_j\|^2 - \|y_i-y_j\|^2\|^2 \quad \text{ where } y \in \mathbb{R}^n.$

Multidimensional Scaling, Local linear Embedding, Isomap

Principal Component Analysis (PCA) (reminder)

$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$
 (PCA)

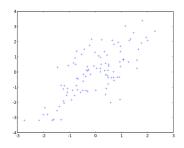
Solution: $U = (u_1|u_2|\cdots|u_n)$ and $W = U^{\top}$ with u_1,\ldots,u_n : eigenvectors (with largest eigenvalues) of correlation/covariance matrix cov(X).

Principal Component Analysis (PCA) (reminder)

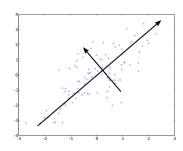
$$U, W = \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{N} \|x_i - UWx_i\|^2$$
 (PCA)

Solution: $U = (u_1|u_2|\cdots|u_n)$ and $W = U^{\top}$ with u_1,\ldots,u_n : eigenvectors (with largest eigenvalues) of correlation/covariance matrix cov(X).

Data



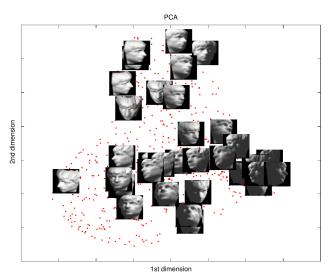
PCA



Principal Component Analysis Example

 $\begin{array}{ll} {\rm Images:} \ 64 \times 64 \\ {\rm Dim:} \ n = 4096 \\ {\rm Number:} \ N = 698 \end{array}$

Different head orientations.



PCA analysis does not correspond to orientation

Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} . Kernel trick (reformulation by inner products):

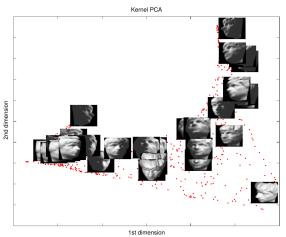
use Eigenvalues of $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$

Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

Kernel trick (reformulation by inner products):

use Eigenvalues of
$$K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$

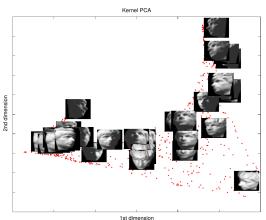


Kernel-PCA (reminder)

Given samples $x_i \in \mathcal{X}$, kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do PCA in the (implicit) feature space \mathcal{H} .

Kernel trick (reformulation by inner products):

use Eigenvalues of
$$K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$



Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1, \ldots, y^N \subset \mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij} = \|x^i - x^j\|$.

Solve, e.g., by gradient descent on

$$J(y) = \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1,\ldots,y^N\subset\mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij}=\|x^i-x^j\|.$

Solve, e.g., by gradient descent on (normalized)

$$J(y) = \frac{1}{\sum_{i < j} \Delta_{ij}^2} \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Derivative is given by:

$$\frac{\partial J(y)}{\partial y_k} = \frac{2}{\sum_{i < j} \Delta_{ij}^2} \sum_{j \neq k} (\|y^k - y^j\|^2 - \Delta_{kj}^2) \frac{y^k - y^j}{\Delta_{kj}}$$

Given: data $X = \{x^1, \dots, x^N\} \subset \mathbb{R}^d$

Task: find embedding $y^1,\ldots,y^N\subset\mathbb{R}^n$ that preserves pairwise distances $\Delta_{ij}=\|x^i-x^j\|.$

Solve, e.g., by gradient descent on (normalized)

$$J(y) = \frac{1}{\sum_{i < j} \Delta_{ij}^2} \sum_{i < j} (\|y^i - y^j\|^2 - \Delta_{ij}^2)^2$$

Derivative is given by:

$$\frac{\partial J(y)}{\partial y_k} = \frac{2}{\sum_{i < j} \Delta_{ij}^2} \sum_{j \neq k} (\|y^k - y^j\|^2 - \Delta_{kj}^2) \frac{y^k - y^j}{\Delta_{kj}}$$

Good starting positions: use first n PCA-projections

MDS is equivalent to PCA for Euclidean distance

Although mathematically very different both methods yield the same result if Euclidean distance is used:

Distance matrix Δ can be written as inner products (kernel matrix)

$$\boldsymbol{X}^{\top}\boldsymbol{X} = -\frac{1}{2}\boldsymbol{H}\Delta\boldsymbol{H} \quad \text{with } \boldsymbol{H} = \mathbb{I} - \frac{1}{N}\vec{\boldsymbol{1}}\vec{\boldsymbol{1}}^{\top}$$

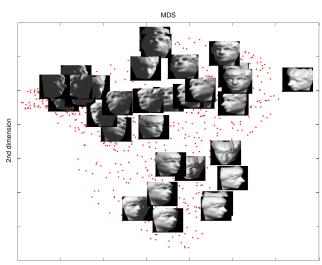
Thus we can rewrite the minimum of J as

$$\underset{Y}{\mathbf{argmin}}\,J(y) = \underset{Y}{\mathbf{argmin}} \sum_{i} \sum_{j} (x_i^\top x_j - y_i^\top y_j)^2$$

with solution: $Y = \Lambda^{1/2} V^{\top}$ with Λ : top n eigenvalues of $X^{\top} X$ and V corresponding eigenvalues, like in PCA.

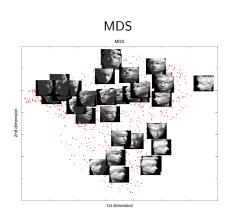
But different distance metrics can be used.

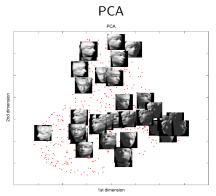
MDS on head-pictures



1st dimension

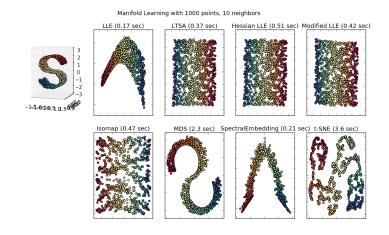
MDS on head-pictures





MDS same as PCA up to sign

Other methods for dimensionality reduction and manifold learning



write relation of methods

Tod

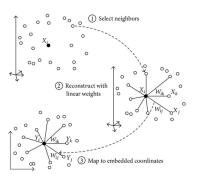
Local Linear Embedding (LLE)

- Assumes that data on a manifold
 - **Description Locally linear**, i.e. each sample and its neighbors lie on approximately linear subspace
- Idea:
 - approximate data by a bunch of linear patches
 - glue patches together on a low dimensional subspace s.t. neighborhood relationships between patches are preserved.

by S.Roweis and L.K. Saul, 2000

Local Linear Embedding (LLE) - Algorithm

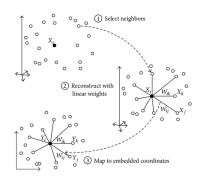
• identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)



Local Linear Embedding (LLE) - Algorithm

- identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- $oldsymbol{2}$ compute weights to best linearly reconstruct x_i from B_i

$$\min_{w} \sum_{i=1}^{N} \left\| x_i - \sum_{j=1}^{k} w_{ij} x_{B_i(j)} \right\|^2$$



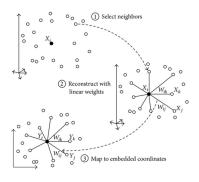
Local Linear Embedding (LLE) - Algorithm

- identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- $oldsymbol{2}$ compute weights to best linearly reconstruct x_i from B_i

$$\min_{w} \sum_{i=1}^{N} \left\| x_i - \sum_{j=1}^{k} w_{ij} x_{B_i(j)} \right\|^2$$

ullet Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$



lacktriangle Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{\boldsymbol{Y}} \mathbf{Tr} \left(\boldsymbol{Y}^{\top} \boldsymbol{Y} L \right) \qquad L = (\mathbb{I} - \boldsymbol{W})^{\top} (\mathbb{I} - \boldsymbol{W})$$

lacktriangle Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{\boldsymbol{Y}} \mathbf{Tr} \left(\boldsymbol{Y}^{\top} \boldsymbol{Y} L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)

lacktriangle Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

$$\min_{Y} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)
- minimize only with constraint 1:
 - lacktriangledown rows of Y are Eigenvalues of L associated with **smallest** Eigenvalues
- Constraint 2 is satisfied if u associated with $\lambda = 0$ is discarded

lacktriangle Find low-dim embedding vector y_i best reconstructed by weights

$$\min_{Y} \sum_{i=1}^{N} \left\| y_i - \sum_{j=1}^{k} w_{ij} y_{B_i(j)} \right\|^2$$

Reformulated as:

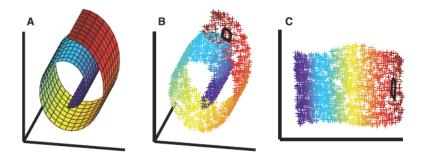
$$\min_{Y} \mathbf{Tr} \left(Y^{\top} Y L \right) \qquad L = (\mathbb{I} - W)^{\top} (\mathbb{I} - W)$$

Solution is arbitrary in origin and orientation and scale.

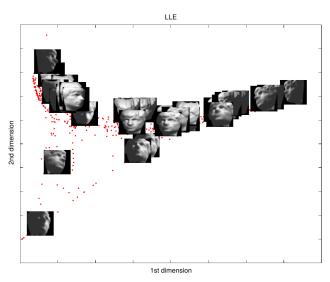
- constraint 1: $Y^{\top}Y = \mathbb{I}$ (scale)
- constraint 2: $\sum_i y_i = 0$ (origin at 0)
- minimize only with constraint 1:
 - ightharpoonup rows of Y are Eigenvalues of L associated with **smallest** Eigenvalues
- Constraint 2 is satisfied if u associated with $\lambda = 0$ is discarded

LLE is global dimensionality reduction while preserving local structure

Local Linear Embedding (LLE) - Example I



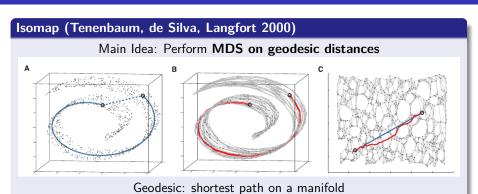
Local Linear Embedding (LLE) - Examples

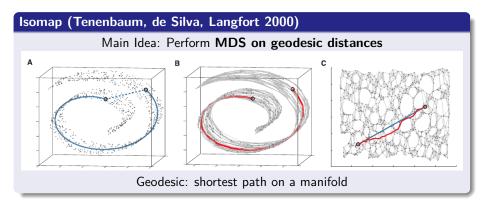


LLE (k=5): Coordinate 1: left-right orientation, 2: \sim up-down

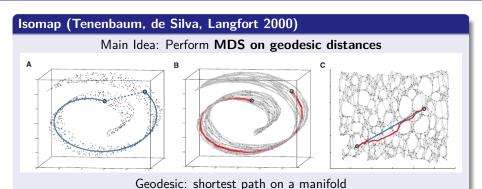
Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances



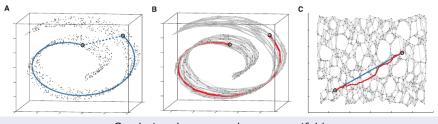


• identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)



- identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- 2 compute pairwise geodesic distances: shortest paths in nearest neighbor graph

Isomap (Tenenbaum, de Silva, Langfort 2000)



- Geodesic: shortest path on a manifold
- identify nearest neighbors B_i for each x_i (either fixed k or fixed radius ϵ)
- compute pairwise geodesic distances: shortest paths in nearest neighbor graph
- perform MDS to preserve these distances

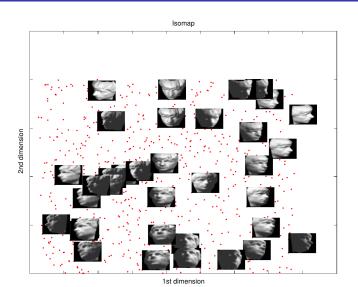
Remark: Different than nonlinear forms of PCA

LLE vs Isomap

Anecdotal: both papers appeared in *Science* in the same issue!

Tenenbaum: "Our approach [Isomap], based on estimating and preserving global geometry, may distort the local structure of the data. Their technique [LLE], based only on local geometry, may distort the global structure," he said.

Isomap - Example



Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- lacksquare finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- ullet finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1, \ldots, |V|$.

Let s(i,j,k) denote the shortest path from i to j using vertices $\{1,\ldots,k\}$

What is s(i, j, k + 1)?

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- ullet finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1, \ldots, |V|$.

Let s(i,j,k) denote the shortest path from i to j using vertices $\{1,\ldots,k\}$

What is
$$s(i, j, k + 1)$$
?

- lacksquare a path using only vertices $\{1,\ldots,k\}$
- ② a path going from i to k+1 and from k+1 to j

Step 2 of Isomap requires to find all shortest paths.

Floyd-Warshall algorithm

- ullet finds all shortest distances in a graph in $\Theta(|V|^3)$
- dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from $1,\ldots,|V|$.

Let s(i,j,k) denote the shortest path from i to j using vertices $\{1,\ldots,k\}$

What is
$$s(i, j, k + 1)$$
?

- a path using only vertices $\{1,\ldots,k\}$
- $oldsymbol{2}$ a path going from i to k+1 and from k+1 to j

$$s(i, j, k+1) = \min (s(i, j, k), s(i, k+1, k) + s(k+1, j, k))$$

Algorithm evaluates s(i, j, k) for all i, j for k = 1, then $k = 2, \dots, |V|$.

Floyd-Warshall algorithm

$$\text{Reminder: } s(i,j,k+1) = \min \left(\ s(i,j,k), \quad s(i,k+1,k) + s(k+1,j,k) \ \right)$$

$$\begin{array}{ll} \text{input} \;\; V, \; w(u,v) & \text{(weight matrix)} \\ s[u][v] = \infty & \forall u,v \in [1,\ldots,|V|] & \text{minimum distances so far} \end{array}$$

Floyd-Warshall algorithm

Reminder:
$$s(i, j, k+1) = \min \left(s(i, j, k), \quad s(i, k+1, k) + s(k+1, j, k) \right)$$

```
\begin{split} & \text{input } V, \, w(u,v) \qquad \text{(weight matrix)} \\ & s[u][v] = \infty \qquad \forall u,v \in [1,\ldots,|V|] \qquad \text{minimum distances so far} \\ & \text{for each vertex } v \\ & s[v][v] \leftarrow 0 \\ & \text{for each edge } (u,v) \\ & s[u][v] \leftarrow w(u,v) \end{split}
```

Floyd-Warshall algorithm

```
\text{Reminder: } s(i,j,k+1) = \min \left( \ s(i,j,k), \quad s(i,k+1,k) + s(k+1,j,k) \ \right)
```

```
input V, w(u, v) (weight matrix)
  s[u][v] = \infty \quad \forall u, v \in [1, \dots, |V|]
                                              minimum distances so far
  for each vertex v
        s[v][v] \leftarrow 0
  for each edge (u, v)
        s[u][v] \leftarrow w(u,v)
  for k from 1 to |V|
        for i from 1 to |V|
             for j from 1 to |V|
                   if s[i][j] > s[i][k] + s[k][j]
                         s[i][j] \leftarrow s[i][k] + s[k][j]
```

Visualization: https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Isomap

- Advantages
 - works for nonlinear data
 - preserves global data structure
 - performs global optimization
- Disadvantages
 - works best for swiss-roll type of structures
 - not stable, sensitive to "noise" examples
 - ullet computationally expensive $O(|V^3|)$

Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

Self-supervised learning

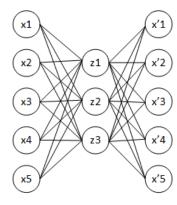
Input: $x \in \mathbb{R}^d$ Output x

hidden layer $z \in \mathbb{R}^n$ (n < d)

(bottleneck)

Encoder: $x \mapsto z$ Decoder: $z \mapsto x$

Trained to minimize reconstruction error.



Autoencoder

Idea: Use a neural network that learns to **reproduce the input** from a **lower-dimensional intermediate** representation

Self-supervised learning

Input: $x \in \mathbb{R}^d$

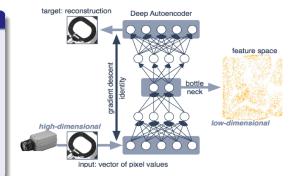
Output x

hidden layer $z \in \mathbb{R}^n \ (n < d)$

(bottleneck)

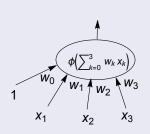
Encoder: $x \mapsto z$ Decoder: $z \mapsto x$

Trained to minimize reconstruction error.



Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

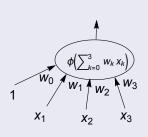


$$\hat{y}_i = \phi \Big(\sum_{j=1}^d w_{ij} x_j \Big)$$

$$\phi(z) = \frac{1}{1 + e^{-z}} \qquad {\rm sigmoid}$$

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron



$$\hat{y}_i = \phi \Big(\sum_{j=1}^d w_{ij} x_j \Big)$$

$$\phi(z) = \frac{1}{1 + e^{-z}} \qquad {\rm sigmoid}$$

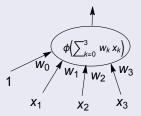
Like in regression problems we use squared error:

$$\mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

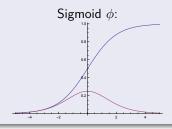
(plus regularization)

Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$

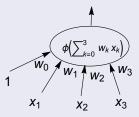


$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$



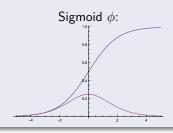
Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$



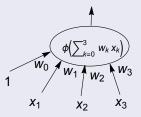
$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

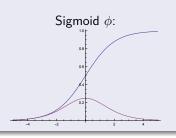
$$\frac{\partial \mathcal{L}(w)}{\partial w} = \underbrace{(\hat{y} - y)}_{\delta} \phi'(z) x$$



Delta Rule

Perform gradient descent in L: $w^t = w^{t-1} - \epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$





$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

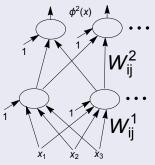
$$\frac{\partial \mathcal{L}(w)}{\partial w} = \underbrace{(\hat{y} - y)}_{\delta} \phi'(z) x$$

$$\Delta w = -\epsilon \frac{\partial \mathcal{L}(w)}{\partial w}$$

$$w := w + \Delta w$$

Multilayer Network - Backpropagation

Stack layers of neurons on top of each other.

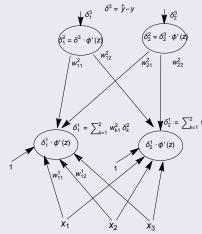


$$\hat{y} = \dots \phi^2(W^2 \phi(W^2 x))$$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Multilayer Network – Backpropagation

Stack layers of neurons on top of each other.



$$\hat{y} = \dots \phi^2(W^2 \phi(W^2 x))$$

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

input: x^0 , input of layer l: x^{l-1} .

Backpropagation of the error signal:

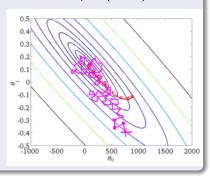
$$\delta^l = (W^{l+1})^{\top} \delta^{l+1}$$

Stochastic gradient descent (SGD)

- Loss/Error is expected empirical error: sum over examples (batch)
- SGD: update parameters on every example:

$$\Delta W^l = -\epsilon \sum_i^N \!\! \delta_i^{l+1} \mathrm{Diag}[\phi'(z_i)](x_i^{l-1})^\top$$

 Minibatches: average gradient over a small # of examples



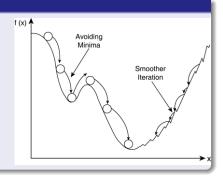
Advantages: many updates of parameters, noisier search helps to avoid flat regions

Momentum

Speed up gradient descent

 Momentum: add a virtual mass to the parameter-particle

$$\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$$

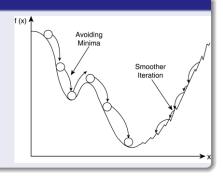


Momentum

Speed up gradient descent

 Momentum: add a virtual mass to the parameter-particle

$$\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$$



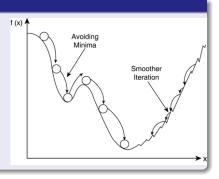
Advantages: may avoids some local minima, faster on ragged surfaces Disadvantages: another hyperparameter, may overshoot

Momentum

Speed up gradient descent

 Momentum: add a virtual mass to the parameter-particle

$$\Delta W_t = -\epsilon \frac{\partial L(x_t)}{\partial W} + \alpha \Delta W_{t-1}$$



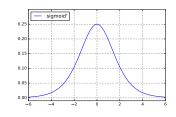
Advantages: may avoids some local minima, faster on ragged surfaces Disadvantages: another hyperparameter, may overshoot

Adam (2014)

Rescale gradient for each parameter to unit size:

$$W_t = W_{t-1} - \epsilon \frac{\langle \nabla W \rangle_{eta_1}}{\sqrt{\langle (\nabla W)^2
angle_{eta_2}} + \lambda}$$
 with moving averages: $\langle \cdot
angle_{eta}$

- Derivative of sigmoid vanished for large absolute input (saturation)
- For deep networks (many layers)
 - gradient vanishes



ReLU

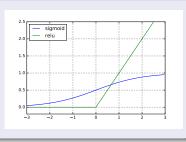
Use a simpler non-linearity:

$$\phi(z) = \max(0, z)$$

CRelu: concatenate positive and negative

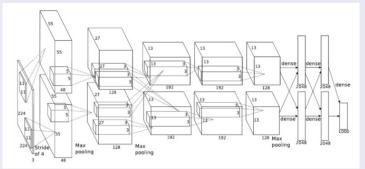
$$\phi(z) = (\max(0, z), -\max(0, -z))$$

Unit-derivative everywhere



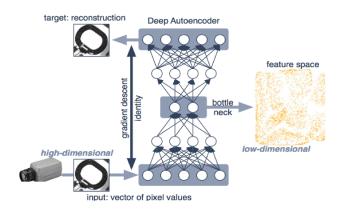
- Trainability and more computer power
 - → larger and deeper networks (>6 layers)
- Breakthrough in performance in many ML applications Vision, NLP, Speech,...

Convolutionary Network (CNN) – for vision



[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]

Back to Autoencoder



- Force a low-dimensional intermediate representation z, with which a good reconstruction can be achieved
- non-linear dimensionality reductions
- But: need to know size of z and sometimes hard to train

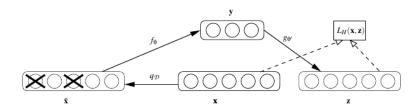
Stacked Denoising Autoencoder

- Idea 1: use a large z but regularize (easier to train)
- Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010

Input: noise corrupted input \hat{x} , target noise free x

$$\mathcal{L}_i = (\phi(\hat{x}_i) - x_i)^2$$



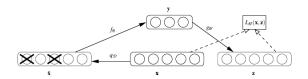
Stacked Denoising Autoencoder

- Idea 1: use a large z but regularize (easier to train)
- Idea 2: make z robust to perturbations (denoising)

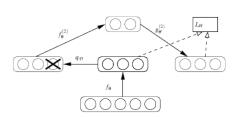
Vincent et al, 2010

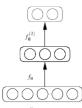
Input: noise corrupted input \hat{x} , target noise free x

$$\mathcal{L}_i = (\phi(\hat{x}_i) - x_i)^2$$



Stacking:





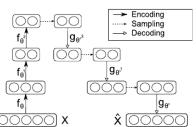
Stacked Denoising Autoencoder

Mnist: generation of samples

Sample generation:

- Encode input
- Bernoulli sampling in latent state of each layer

Stacked denoising autoencoder:



Manifold learning and dimensionality reduction

Summary:

- Linear methods are quite useful already (PCA etc.)
- For nonlinear methods: Isomap and autoencoders are the most useful methods

Dimensionality reduction is important for:

- data visualization
- representation learning
- generative models