Machine Learning for Robotics

Intelligent Systems Series
Lecture 5

Georg Martius

MPI for Intelligent Systems, Tiibingen, Germany

May 22, 2017

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

MAX-PLANCK-GESELLSCHAFT

Georg Martius Machine Learning for Robotics May 22, 2017

Unsupervised Learning
Dimensionality Reduction — continued

Georg Martius Machine Learning for Robotics May 22, 2017 2 / 34

Dimensionality Reduction — reminder

Given: data

X={a ..., 2N} CR?

Dimensionality Reduction — Transductive

Task: Find a lower-dimensional representation

Y={y',...,y"}CR"
with n < d, such that Y “represents X well”

Dimensionality Reduction — Inductive

Task: find a function ¢ : R? — R™ and set y; = ¢(x;)

(allows computing ¢(z) for x # X: "out-of-sample extension")

Georg Martius Machine Learning for Robotics May 22, 2017 3/ 34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
N

For instance minimize: > ||z — ¥(v:)||? where y = ¢(x;), ¢ : RT — T"
i=1

and ¢ : R» — R%.

Georg Martius Machine Learning for Robotics May 22, 2017 4 / 34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*> where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and : Autoencoder

Georg Martius Machine Learning for Robotics May 22, 2017 4 / 34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*> where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)

for neural networks for ¢: Selforganizing Maps (SOM)
for neural networks for ¢, and : Autoencoder

Optimizing a Cost for non-parametric transformations:

N
For instance minimize: o i = 25l1% = llys — g lI°1° where y € R™.
i=1j=1

Georg Martius Machine Learning for Robotics May 22, 2017 4 / 34

Dimensionality Reduction — Overview

Optimizing a cost for parametric transformations:

Model “Y represents X well” as a cost function and optimize for it.
For instance minimize: szi llzs — Y (y:)||*> where y = ¢(x;),¢: RT — T™
and ¢ : R» — R%. -

for linear ¢, v: Principal Component Analysis (PCA)

for kernelized ¢: Kernel Principal Component Analysis (KPCA)
for neural networks for ¢: Selforganizing Maps (SOM)

for neural networks for ¢, and : Autoencoder

Optimizing a Cost for non-parametric transformations:

N
For instance minimize: o i = 25l1% = llys — g lI°1° where y € R™.
i=1j=1

Multidimensional Scaling, Local linear Embedding, Isomap

Georg Martius Machine Learning for Robotics May 22, 2017 4 / 34

Principal Component Analysis (PCA) (reminder)

N
UW = argmin Z |z, — UWa||? (PCA)
UeRnxd,WeRdxn 577

Solution: U = (u1|uz| e \un) and W =UT with uq,...,un,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).

Georg Martius Machine Learning for Robotics May 22, 2017 5/ 34

Principal Component Analysis (PCA) (reminder)

N
UW = argmin Z |z, — UWa||? (PCA)
UeRnxd,WeRdxn 577

Solution: U = (u1|uz| e \un) and W =UT with uq,...,un,: eigenvectors
(with largest eigenvalues) of correlation/covariance matrix cov(X).
Data PCA

Georg Martius Machine Learning for Robotics May 22, 2017 5/ 34

Principal Component Analysis Example

Hs
Images: 64 x 64 E =

Dim: n = 4096
Number: N = 698

Different head

orientations. E o 1

2nd dimension

1st dimension

PCA analysis does not correspond to orientation

Georg Martius Machine Learning for Robotics May 22, 2017

Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space .
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(xi, x;)

Georg Martius Machine Learning for Robotics May 22, 2017 7 / 34

Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(x;, ;)

Kernel PCA
|
P
Ry =

-

2nd dimension

L.

I
1st dimension

Georg Martius Machine Learning for Robotics May 22, 2017 7 / 34

Kernel-PCA (reminder)

Given samples x; € X, kernel k£ : X x X — R with an implicit feature map
¢: X — H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of K;; = (¢(x;), ¢(z;)) = k(x;, ;)

Kernel PCA
|
Iy
Ry =

2nd dimension

L
1st dimension

Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness

Georg Martius Machine Learning for Robotics May 22, 2017 7 / 34

Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} C R?

Task: find embedding y',...,4" C R™ that preserves pairwise distances
Aij = [Ja" —27].

Solve, e.g., by gradient descent on

Ty =Y (ly' =y I° - A})?

i<J

Georg Martius Machine Learning for Robotics May 22, 2017 8 / 34

Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} Cc R?

Task: find embedding #',...,y"Y C R™ that preserves pairwise distances
Aij = [lz* = a7]].

Solve, e.g., by gradient descent on (normalized)

J(y) = Z sz > (' =vI? - Ay)?
1<j ” 1<J
Derivative is given by:

9J(y) 112 2 Zlk - le
= Ily* — 7[> — AF))
8yk ZZ<] %j ; ki Ak.]

Georg Martius Machine Learning for Robotics May 22, 2017

Multidimensional Scaling (MDS)

Given: data X = {z!,..., 2V} Cc R?

Task: find embedding #',...,y"Y C R™ that preserves pairwise distances
Aij = [lz* = a7]].

Solve, e.g., by gradient descent on (normalized)

J(y) = Z sz > (' =vI? - Ay)?
1<j ” 1<J
Derivative is given by:

9J(y) 112 2 Zlk - le
= Ily* — 7[> — AF))
ayk ZZ<] %j ; ki Ak.]

Good starting positions: use first n PCA-projections

Georg Martius Machine Learning for Robotics May 22, 2017

Multidimensional Scaling (MDS)

MDS is equivalent to PCA for Euclidean distance

Although mathematically very different both methods yield the same result if
Euclidean distance is used:
Distance matrix A can be written as inner products (kernel matrix)

1 1 e
XTX = —iHAH with H =1 — Nll

Thus we can rewrite the minimum of J as
argmin J(y) = argmin DY (@l w—yly)?
i g

with solution: ¥ = A2V T with A: top n eigenvalues of X' X and V
corresponding eigenvalues, like in PCA.

But different distance metrics can be used.

Georg Martius Machine Learning for Robotics May 22, 2017

MDS on head-pictures

MDS

2nd dimension

1st dimension

Georg Martiu Machine Learning f May 22, 2017 10 / 34

MDS on head-pictures

MDS same as PCA up to sign

Georg Martius Machine Learning for Robotics May 22, 2017

Other methods for dimensionality reduction and manifold learning

Manifold Learning with 1000 points, 10 neighbors

LLE (0.17 sec) LTSA (0.37 sec) Hessian LLE (0.51 sec) Modified LLE (0.42 sec)
3
2
1
0
-1
-2
= -3
-13060.5 Q.i&@i
Isomap (0.47 sec) MDS (2.3 sec) SpectralEmbedding (0.21 sec) t-SNE (3.6 sec)
£
Tod:
write relation of methods

Georg Martius

Machine Learning for Robotics

May 22, 2017 11 / 34

Local Linear Embedding (LLE)

> Locally linear, i.e. each sample and its =%
neighbors lie on approximately linear
subspace

Assumes that data on a manifold : t\l'_ V : ((

Idea:

@ approximate data by a bunch of linear
patches

© glue patches together on a low
dimensional subspace s.t. neighborhood
relationships between patches are
preserved.

by S.Roweis and L.K. Saul, 2000

Georg Martius Machine Learning for Robotics May 22, 2017 12 / 34

Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

o ‘; % (@ Select neighbors
o o-2-___
o © X B
o
o ® o
o
00° o o
o o

@) Reconstruct with
linear weights

Georg Martius

Machine Learning for Robotics

May 22, 2017 13 / 34

Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute weights to best linearly . 0o %0 o Osdectncighbors
reconstruct x; from B;

o-=-_

o B)
° 5 xb o
o
N k 9 00 ° °, Z
ming x»—g Wi TR, (5
w ‘ ? 7 Bz(])H @) Reconstruct with
i=1 j=1

linear weights

Georg Martius

Machine Learning for Robotics

May 22, 2017 13 / 34

Local Linear Embedding (LLE) — Algorithm

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute weights to best linearly . 0o %0 o Osdectncighbors
reconstruct x; from B;

o-=-_

o o IS
° 5 xb o)
o
N k 2 %0 ° . g
ming x‘—g Wi T B, (j
w ‘ ? 7 Bz(])H @) Reconstruct with
i=1 j=1

linear weights
@ Find low-dim embedding vector y; best
reconstructed by weights

N
min g ’
Y
i=1

k
2
Yi — Z WiiYB,(5) H
j=1

Georg Martius

Machine Learning for Robotics

May 22, 2017 13 / 34

Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:

min Tr (YTyrL) L=O-W)"(1-W)

Georg Martius Machine Learning for Robotics May 22, 2017

Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.

constraint 1: Y'Y =1 (scale)
constraint 2:). y; = 0 (origin at 0)

Georg Martius Machine Learning for Robotics May 22, 2017

Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =1 (scale)
constraint 2:). y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues

Constraint 2 is satisfied if u associated with A = 0 is discarded

Georg Martius

Machine Learning for Robotics

May 22, 2017 14 / 34

Local Linear Embedding (LLE) — Algorithm (continued)

@ Find low-dim embedding vector y; best reconstructed by weights

N k 9
rr;in E ‘ Yi — E wiiji(j)H
i=1 j=1

Reformulated as:
myinTr(YTYL) L=O-W)"(1-W)

Solution is arbitrary in origin and orientation and scale.
constraint 1: Y'Y =1 (scale)
constraint 2:). y; = 0 (origin at 0)
minimize only with constraint 1:
» rows of Y are Eigenvalues of L associated with smallest Eigenvalues

Constraint 2 is satisfied if u associated with A = 0 is discarded

LLE is global dimensionality reduction while preserving local structure

Georg Martius Machine Learning for Robotics May 22, 2017 14 / 34

Local Linear Embedding (LLE) — Example |

Georg Martius Machine Learning for Robotics May 22, 2017 15 / 34

Local Linear Embedding (LLE) — Examples

LLE

2nd dimension
T

1st dimension

LLE (k=5): Coordinate 1: left-right orientation, 2: ~ up-down

Georg Martius Machine Learning for Robotics May 22, 2017 16 / 34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Georg Martius Machine Learning for Robotics May 22, 2017 17 / 34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

Georg Martius Machine Learning for Robotics May 22, 2017 17 / 34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

Georg Martius Machine Learning for Robotics May 22, 2017 17 / 34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute pairwise geodesic distances: shortest paths in nearest neighbor
graph

Georg Martius Machine Learning for Robotics May 22, 2017 17 / 34

Isomap — Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)

Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

@ identify nearest neighbors B; for each x;
(either fixed k or fixed radius €)

@ compute pairwise geodesic distances: shortest paths in nearest neighbor
graph
@ perform MDS to preserve these distances

Remark: Different than nonlinear forms of PCA
Georg Martius Machine Learning for Robotics May 22, 2017

17 / 34

LLE vs Isomap

Anecdotal: both papers appeared in Science in the same issue!

Tenenbaum: “Our approach [Isomap], based on estimating and preserving global
geometry, may distort the local structure of the data. Their technique [LLE],
based only on local geometry, may distort the global structure,” he said.

Georg Martius Machine Learning for Robotics May 22, 2017 18 / 34

Isomap — Example

Isomap

2nd dimension

1st dimension

Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down

Georg Martius Machine Learning for Robotics May 22, 2017 19 / 34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)

dynamic programming solution that iteratively improves current estimates

Georg Martius Machine Learning for Robotics

May 22, 2017

20 / 34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)
dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?

Georg Martius Machine Learning for Robotics May 22, 2017 20 / 34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)
dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?

@ a path using only vertices {1, ..., k}
@ a path going from i to k + 1 and from k& + 1 to j

Georg Martius Machine Learning for Robotics May 22, 2017 20 / 34

Isomap — Details

Step 2 of Isomap requires to find all shortest paths.

Floyd—Warshall algorithm

finds all shortest distances in a graph in O(|V|?)

dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V' numbered from 1,...,|V|.
Let s(4, j, k) denote the shortest path from i to j using vertices {1,...,k}

What is s(i, 7,k +1)?

@ a path using only vertices {1, ..., k}
@ a path going from i to k + 1 and from k& + 1 to j
s(i,j,k+ 1) =min (s(i,5,k), s(i,k+1,k)+s(k+1,5k))
Algorithm evaluates s(i, j, k) for all 4,5 for k =1, then k =2,...,|V].

Georg Martius Machine Learning for Robotics May 22, 2017

Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min (s(i, 4, k), s(i,k+1,k)+s(k+1,j,k))

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far

Georg Martius Machine Learning for Robotics May 22, 2017 21 / 34

https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min (s(i, 4, k), s(i,k+1,k)+s(k+1,j,k))

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far
for each vertex v
s[v][v] 0

for each edge (u,v)
s[ul[v] < w(u, v)

Georg Martius Machine Learning for Robotics May 22, 2017 21 / 34

https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Floyd—Warshall algorithm

Reminder: s(i,j,k 4+ 1) = min (s(i, 4, k), s(i,k+1,k)+s(k+1,j,k))

input V, w(u,v) (weight matrix)
s[u][v] = oo Yu,v € [1,...,|V]] minimum distances so far
for each vertex v
s[v][v] 0

for each edge (u,v)
s[u][v] + w(u,v)
for k from 1 to |V|
for ¢ from 1 to |V|
for j from 1 to |V/|
if s[2][j] > s[d][k] + s[k][j]
s[i][4] = sld][k] + s[k][]

Visualization: https://www.cs.usfca.edu/ galles/visualization/Floyd.html

Georg Martius Machine Learning for Robotics May 22, 2017

https://www.cs.usfca.edu/~galles/visualization/Floyd.html

Advantages
o works for nonlinear data
o preserves global data structure
o performs global optimization
Disadvantages
o works best for swiss-roll type of structures
@ not stable, sensitive to “noise” examples
o computationally expensive O(|V?)

Georg Martius Machine Learning for Robotics May 22, 2017 22 / 34

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

Georg Martius Machine Learning for Robotics May 22, 2017 23 / 34

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

Self-supervised learning

Input: = € R¢

Output z

hidden layer z € R" (n < d)
(bottleneck)

Encoder: z — 2z
Decoder: z —

Trained to minimize
reconstruction error.

Georg Martius Machine Learning for Robotics May 22, 2017 23 / 34

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

= . target: reconstruction Deep Autoencoder
Self-supervised learning °
-

Input: 2 € R¢
feature space
Output z =
hidden layer z € R™ (n < d) g
(bottleneck) £
:
Encoder: z — z)

low-dimensional

. high-dimensional
Decoder: z — _ Q v

input: vector of pixel values

Trained to minimize
reconstruction error.

Georg Martius Machine Learning for Robotics May 22, 2017 23 / 34

Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

i = ¢(zd: wij$j>
=1

1

o(z) = ——— sigmoid
1 =7

Georg Martius Machine Learning for Robotics May 22, 2017 24 / 34

Artificial Neural Networks — a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

j=1
1

@ o(z) = —— sigmoid
1 =7
Ag Wy Wy \W3 aF @

Like in regression problems we use squared
error:

1
D3

(plus regularization)

(\o}

Georg Martius Machine Learning for Robotics May 22, 2017 24 / 34

Artificial Neural Networks — a short introduction

Delta Rule

Perform gradient descent in L: w* = w!=! — 6%

4

Georg Martius Machine Learning for Robotics May 22, 2017 25 / 34

Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w* = w!=! — 6%
| X
_ 1 Y
£0) = 53 i w)
2 _ (5o (a)e
5

4

Georg Martius Machine Learning for Robotics May 22, 2017 25 / 34

Artificial Neural Networks — a short introduction

Delta Rule
Perform gradient descent in L: w* = w!=! — 6%
| X
_1 L2
£0) = 53 i w)
2 _ (5o (a)e
5
Aw = —eaﬁ(w)
ow
w:=w + Aw

4

Georg Martius Machine Learning for Robotics May 22, 2017 25 / 34

Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation

Stack layers of neurons on top of each other.
¢?(x)

Georg Martius Machine Learning for Robotics May 22, 2017

Artificial Neural Networks — a short introduction

Multilayer Network — Backpropagation

Stack layers of neurons on top of each other.

:
input: 20, input of layer [: z!~1.

Backpropagation of the error signal:
5t = (Wl-&-l)'l'(sl-&-l

Georg Martius Machine Learning for Robotics May 22, 2017 26 / 34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Stochastic gradient descent (SGD)

Loss/Error is expected empirical error: sum over examples (batch)

SGD: update parameters on every
example:

N
AW = —eX 6/ Diagl¢! (2:)] (=17 T

Minibatches: average gradient over a .
. N
small # of examples o0 500 0 500 1000

1500 2000

<

Advantages: many updates of parameters, noisier search helps to avoid flat
regions

Georg Martius Machine Learning for Robotics May 22, 2017 27 / 34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

aL(xt)

A =]
Wi oW

+ AW,

=

Georg Martius Machine Learning for Robotics May 22, 2017 28 / 34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

aL(xt)

A =]
Wi oW

+ AW,

=

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

Georg Martius Machine Learning for Robotics May 22, 2017 28 / 34

Artificial Neural Networks — a short introduction
Training: old and new tricks

Momentum

(x) A

Avoiding
Minima

Speed up gradient descent

Smoother

Momentum: add a virtual mass to the imoothe

parameter-particle

8L(xt)

A =]
Wi oW

+ AW,

=

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

Adam (2014)

Rescale gradient for each parameter to unit size:

W, =W,_1 — e#ﬁ‘;;“ with moving averages: (-)g
2

Georg Martius Machine Learning for Robotics May 22, 2017 28 / 34

Artificial Neural Networks — a short introduction

Training: old and new tricks

— sigmoid’

Derivative of sigmoid vanished for large
absolute input (saturation)

For deep networks (many layers)
» gradient vanishes

Use a simpler non-linearity:

¢(z) = max(0, z) =]

15

CRelu: concatenate positive and negative

¢(z) = (max(0, z), — max(0, —z)) -

Unit-derivative everywhere

4

Georg Martius Machine Learning for Robotics May 22, 2017 29 / 34

Artificial Neural Networks — a short introduction

Trainability and more computer power
> larger and deeper networks (>6 layers)

Breakthrough in performance in many ML applications
Vision, NLP, Speech,. ..

Convolutionary Network (CNN) — for vision

\13 v [Nz N e
= \ [\ \ |
f % 13
\ A " 27 N r“ Ly P 23 dense| [dense]
I) — l p P |'
=N A
1ty \ . \ i 3 | | A
B N | — A L] a7 28 = ik \dense
v \ 3 18 : s i
55 X '
—— 5\ \ay 13 13 \)
1 I M . | EE—y/ 9
224 s A 3 |‘ a 3 .[3]| f |]]
L = |- EN 14;] = | 13 dense| jdons
N fss |l :] X \ | B
AV \ e 192 T8 Max
3 G
28% S eride, Max 128 Max pooling 2% i
Yot a poaling pooling
3 W

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]
y

Georg Martius

Machine Learning for Robotics

May 22, 2017 30 / 34

Back to Autoencoder

target: reconstruction Deep Autoencoder

feature space

gradient descent

high-dimensional low-dimensional

input: vector of pixel values

Force a low-dimensional intermediate representation z, with which a good
reconstruction can be achieved

non-linear dimensionality reductions

But: need to know size of z and sometimes hard to train

Georg Martius Machine Learning for Robotics May 22, 2017 31 / 34

Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)
Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input Z, target noise free x

L= (&) — x;)°

Lyix,z)
fa VTR
N
\\
o ———
XOXOOle™ (O O QO O] 01010]10]0)
% z

Georg Martius Machine Learning for Robotics May 22, 2017 32 / 34

Stacked Denoising Autoencoder

Idea 1: use a large z but regularize (easier to train)
Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input Z, target noise free x

Li = (¢(&:) — i)

¥

(elele)
g
PR
N

fo

.

.

EOXOO)e [O00C0C0) (CCOO0)]
X

X

Stacking:

(e]e]e)

(0]0]0]0]0))

Georg Martius

Stacked Denoising Autoencoder

Mnist: generation of samples

Stacked autoencoder Stacked denoising

Ol¢ autoencoder:
3| NWHEREEEEEE
NE HEEEEREEEEE
o slz|3|z]z]3]2]3]e|
=1 = o of Ld B B Gl Bl G
-3 '?—‘ ?‘ ';L'.}'Z'J’;';_
al: & 5 s1515)1515) 5
é P P 2122|221 a]2
NE (1 & clélélelé)é
1 B 1 Bl Bi K1 K1 R Kl B K K
vl v il d vl d d W ed Vi

= \ —= Encoding

)\/} ﬁgJC SR R - Sampling

. , — Decodin

Sample generation: fy |9 9

(OO [CCH{CO)

Encode input

Bernoulli sampling in
latent state of each layer

Georg Martius Machine Learning for Robotics May 22, 2017 33 / 34

Manifold learning and dimensionality reduction

Summary:
Linear methods are quite useful already (PCA etc.)

For nonlinear methods: Isomap and autoencoders are the most useful
methods

Dimensionality reduction is important for:
data visualization
representation learning

generative models

Georg Martius Machine Learning for Robotics May 22, 2017 34 / 34

