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Unsupervised Learning
Dimensionality Reduction – continued
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Dimensionality Reduction – reminder

Given: data

X = {x1, . . . , xN} ⊂ Rd

Dimensionality Reduction – Transductive
Task: Find a lower-dimensional representation

Y = {y1, . . . , yN} ⊂ Rn

with n� d, such that Y “represents X well”

Dimensionality Reduction – Inductive
Task: find a function φ : Rd → Rn and set yi = φ(xi)

(allows computing φ(x) for x 6= X: "out-of-sample extension")
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Dimensionality Reduction – Overview

Optimizing a cost for parametric transformations:
Model “Y represents X well” as a cost function and optimize for it.

For instance minimize:
N∑
i=1
‖xi − ψ(yi)‖2 where y = φ(xi), φ : Rd → >n

and ψ : Rn → Rd.

• for linear φ, ψ: Principal Component Analysis (PCA)
• for kernelized φ: Kernel Principal Component Analysis (KPCA)
• for neural networks for φ: Selforganizing Maps (SOM)
• for neural networks for φ, and ψ: Autoencoder

Optimizing a Cost for non-parametric transformations:

For instance minimize:
N∑

i=1,j=1
‖‖xi − xj‖2 − ‖yi − yj‖2‖2 where y ∈ Rn.

• Multidimensional Scaling, Local linear Embedding, Isomap
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Principal Component Analysis (PCA) (reminder)

U,W = argmin
U∈Rn×d,W∈Rd×n

N∑
i=1
‖xi − UWxi‖2 (PCA)

Solution: U =
(
u1|u2| · · · |un

)
and W = U> with u1, . . . , un: eigenvectors

(with largest eigenvalues) of correlation/covariance matrix cov(X).

Data PCA
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Principal Component Analysis Example

Images: 64× 64
Dim: n = 4096
Number: N = 698

Different head
orientations.

PCA analysis does not correspond to orientation
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Kernel-PCA (reminder)

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj)
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Given samples xi ∈ X , kernel k : X × X → R with an implicit feature map
φ : X → H. Do PCA in the (implicit) feature space H.
Kernel trick (reformulation by inner products):

use Eigenvalues of Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj)

Kernel-PCA (rbf): Coordinate 1: left-right orientation, 2: brightness
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Multidimensional Scaling (MDS)

Given: data X = {x1, . . . , xN} ⊂ Rd

Task: find embedding y1, . . . , yN ⊂ Rn that preserves pairwise distances
∆ij = ‖xi − xj‖.

Solve, e.g., by gradient descent on

J(y) =
∑
i<j

(‖yi − yj‖2 −∆2
ij)2

Derivative is given by:

∂J(y)
∂yk

= 2∑
i<j ∆2

ij

∑
j 6=k

(‖yk − yj‖2 −∆2
kj)

yk − yj

∆kj

Good starting positions: use first n PCA-projections
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Multidimensional Scaling (MDS)

MDS is equivalent to PCA for Euclidean distance
Although mathematically very different both methods yield the same result if
Euclidean distance is used:
Distance matrix ∆ can be written as inner products (kernel matrix)

X>X = −1
2H∆H with H = I− 1

N
~1~1>

Thus we can rewrite the minimum of J as

argmin
Y

J(y) = argmin
Y

∑
i

∑
j

(x>i xj − y>i yj)2

with solution: Y = Λ1/2V > with Λ: top n eigenvalues of X>X and V
corresponding eigenvalues, like in PCA.

But different distance metrics can be used.
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MDS on head-pictures
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MDS on head-pictures

MDS PCA

MDS same as PCA up to sign
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Other methods for dimensionality reduction and manifold learning

Todo:
write relation of methods
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Local Linear Embedding (LLE)

• Assumes that data on a manifold
Locally linear, i.e. each sample and its

neighbors lie on approximately linear
subspace
• Idea:

1 approximate data by a bunch of linear
patches

2 glue patches together on a low
dimensional subspace s.t. neighborhood
relationships between patches are
preserved.

by S.Roweis and L.K. Saul, 2000
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Local Linear Embedding (LLE) – Algorithm

1 identify nearest neighbors Bi for each xi
(either fixed k or fixed radius ε)

2 compute weights to best linearly
reconstruct xi from Bi

min
w

N∑
i=1

∥∥∥xi − k∑
j=1

wijxBi(j)

∥∥∥2

3 Find low-dim embedding vector yi best
reconstructed by weights

min
Y

N∑
i=1

∥∥∥yi − k∑
j=1

wijyBi(j)

∥∥∥2
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Local Linear Embedding (LLE) – Algorithm (continued)

3 Find low-dim embedding vector yi best reconstructed by weights

min
Y

N∑
i=1

∥∥∥yi − k∑
j=1

wijyBi(j)

∥∥∥2

Reformulated as:

min
Y

Tr
(
Y >Y L

)
L = (I−W )>(I−W )

Solution is arbitrary in origin and orientation and scale.
• constraint 1: Y >Y = I (scale)
• constraint 2:

∑
i yi = 0 (origin at 0)

• minimize only with constraint 1:
rows of Y are Eigenvalues of L associated with smallest Eigenvalues

• Constraint 2 is satisfied if u associated with λ = 0 is discarded
LLE is global dimensionality reduction while preserving local structure
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Local Linear Embedding (LLE) – Example I
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Local Linear Embedding (LLE) – Examples

LLE (k=5): Coordinate 1: left-right orientation, 2: ∼ up-down
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Isomap – Nonlinear extension of MDS

Isomap (Tenenbaum, de Silva, Langfort 2000)
Main Idea: Perform MDS on geodesic distances

Geodesic: shortest path on a manifold

1 identify nearest neighbors Bi for each xi
(either fixed k or fixed radius ε)

2 compute pairwise geodesic distances: shortest paths in nearest neighbor
graph

3 perform MDS to preserve these distances
Remark: Different than nonlinear forms of PCA
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LLE vs Isomap

Anecdotal: both papers appeared in Science in the same issue!

Tenenbaum: “Our approach [Isomap], based on estimating and preserving global
geometry, may distort the local structure of the data. Their technique [LLE],
based only on local geometry, may distort the global structure,” he said.
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Isomap – Example

Isomap (k=6): Coordinate 1: left-right orientation, 2: up-down
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Isomap – Details

Step 2 of Isomap requires to find all shortest paths.

Floyd–Warshall algorithm
• finds all shortest distances in a graph in Θ(|V |3)
• dynamic programming solution that iteratively improves current estimates

Given: Graph with vertices V numbered from 1, . . . , |V |.
Let s(i, j, k) denote the shortest path from i to j using vertices {1, . . . , k}

What is s(i, j, k + 1)?

1 a path using only vertices {1, . . . , k}
2 a path going from i to k + 1 and from k + 1 to j

s(i, j, k + 1) = min
(
s(i, j, k), s(i, k + 1, k) + s(k + 1, j, k)

)
Algorithm evaluates s(i, j, k) for all i, j for k = 1, then k = 2, . . . , |V |.
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Floyd–Warshall algorithm

Reminder: s(i, j, k + 1) = min
(
s(i, j, k), s(i, k + 1, k) + s(k + 1, j, k)

)
input V , w(u, v) (weight matrix)
s[u][v] =∞ ∀u, v ∈ [1, . . . , |V |] minimum distances so far

for each vertex v
s[v][v]← 0

for each edge (u, v)
s[u][v]← w(u, v)

for k from 1 to |V |
for i from 1 to |V |

for j from 1 to |V |
if s[i][j] > s[i][k] + s[k][j]

s[i][j]← s[i][k] + s[k][j]

Visualization: https://www.cs.usfca.edu/̃ galles/visualization/Floyd.html
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Isomap

• Advantages
works for nonlinear data
preserves global data structure
performs global optimization

• Disadvantages
works best for swiss-roll type of structures
not stable, sensitive to “noise” examples
computationally expensive O(|V 3|)
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Autoencoder

Idea: Use a neural network that learns to reproduce the input from a
lower-dimensional intermediate representation

Self-supervised learning
Input: x ∈ Rd
Output x
hidden layer z ∈ Rn (n < d)
(bottleneck)

Encoder: x 7→ z
Decoder: z 7→ x

Trained to minimize
reconstruction error.
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Artificial Neural Networks – a short introduction

Inspired by biological neurons, but extremely simplified:

Simple artificial Neuron

ϕ
k=0

3
wk xk

x1 x2 x3

w3w2w1
1

w0

ŷi = φ
( d∑
j=1

wijxj

)

φ(z) = 1
1 + e−z

sigmoid

Like in regression problems we use squared
error:

L(w) = 1
2

N∑
i=1

(ŷi − yi)2

(plus regularization)
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Artificial Neural Networks – a short introduction

Delta Rule

Perform gradient descent in L: wt = wt−1 − ε∂L(w)
∂w

ϕ
k=0

3
wk xk

x1 x2 x3

w3w2w1
1

w0

Sigmoid φ:

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

L(W ) = 1
2

N∑
i=1

(ŷi − yi)2

∂L(w)
∂w

= (ŷ − y)︸ ︷︷ ︸
δ

φ′(z)x

∆w = −ε∂L(w)
∂w

w := w + ∆w
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Artificial Neural Networks – a short introduction

Multilayer Network – Backpropagation
Stack layers of neurons on top of each other.

x1 x2 x3

1

Wij
2

Wij
11

1
1

ϕ2(x)

ŷ = . . . φ2(W 2φ(W 2x))

L(W ) = 1
2

N∑
i=1

(ŷi − yi)2
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Artificial Neural Networks – a short introduction

Multilayer Network – Backpropagation
Stack layers of neurons on top of each other.

δ1
1 ·ϕ ' (z)

x1 x2 x3

δ3 = y-y

1

δ2
1 ·ϕ ' (z)

1

δ1
2 = δ3 ·ϕ ' (z)

w12
2

w11
2

δ2
2 = δ2

3 ·ϕ ' (z)

δ1
3

δ2
3

w22
2w21

2

δ1
1 = 

k=1

2
wk1
2 δk

2 δ2
1 = 

k=1

2
wk2
2 δk

2

w11
1 w12

1

ŷ = . . . φ2(W 2φ(W 2x))

L(W ) = 1
2

N∑
i=1

(ŷi − yi)2

∆W l = −ε
N∑
i

δl+1
i Diag[φ′(zi)](xl−1

i )>

input: x0, input of layer l: xl−1.

Backpropagation of the error signal:
δl = (W l+1)>δl+1
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Artificial Neural Networks – a short introduction
Training: old and new tricks

Stochastic gradient descent (SGD)
• Loss/Error is expected empirical error: sum over examples (batch)

• SGD: update parameters on every
example:

∆W l = −ε
�
�
��A
A
AA

N∑
i

δl+1
i Diag[φ′(zi)](xl−1

i )>

• Minibatches: average gradient over a
small # of examples

Advantages: many updates of parameters, noisier search helps to avoid flat
regions
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Artificial Neural Networks – a short introduction
Training: old and new tricks

Momentum

Speed up gradient descent
• Momentum: add a virtual mass to the
parameter-particle

∆Wt = −ε∂L(xt)
∂W

+ α∆Wt−1

Advantages: may avoids some local minima, faster on ragged surfaces
Disadvantages: another hyperparameter, may overshoot

Adam (2014)
Rescale gradient for each parameter to unit size:
Wt = Wt−1 − ε

〈∇W 〉β1√
〈(∇W )2〉β2 +λ

with moving averages: 〈·〉β
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Artificial Neural Networks – a short introduction
Training: old and new tricks

• Derivative of sigmoid vanished for large
absolute input (saturation)
• For deep networks (many layers)

gradient vanishes
6 4 2 0 2 4 6

0.00

0.05

0.10

0.15

0.20

0.25
sigmoid'

ReLU
Use a simpler non-linearity:

φ(z) = max(0, z)

CRelu: concatenate positive and negative

φ(z) = (max(0, z),−max(0,−z))

Unit-derivative everywhere
3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5
sigmoid
relu
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Artificial Neural Networks – a short introduction

• Trainability and more computer power
larger and deeper networks (>6 layers)

• Breakthrough in performance in many ML applications
Vision, NLP, Speech,. . .

Convolutionary Network (CNN) – for vision

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]
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Back to Autoencoder

• Force a low-dimensional intermediate representation z, with which a good
reconstruction can be achieved

• non-linear dimensionality reductions
• But: need to know size of z and sometimes hard to train

Georg Martius Machine Learning for Robotics May 22, 2017 31 / 34



Stacked Denoising Autoencoder

• Idea 1: use a large z but regularize (easier to train)
• Idea 2: make z robust to perturbations (denoising)

Vincent et al, 2010
Input: noise corrupted input x̂, target noise free x

Li = (φ(x̂i)− xi)2
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Stacked Denoising Autoencoder

Mnist: generation of samples
Stacked autoencoder: Stacked denoising

autoencoder:

Sample generation:
• Encode input
• Bernoulli sampling in

latent state of each layer
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Manifold learning and dimensionality reduction

Summary:
• Linear methods are quite useful already (PCA etc.)
• For nonlinear methods: Isomap and autoencoders are the most useful

methods
Dimensionality reduction is important for:
• data visualization
• representation learning
• generative models
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