Machine Learning for Robotics Intelligent Systems Series Lecture 6

Georg Martius Slides adapted from David Silver, Deepmind

MPI for Intelligent Systems, Tübingen, Germany

May 31, 2017

Reminder: Branches of Machhine Learning

Many Types and Areas of Reinforcement Learning

• There is no supervisor, only a reward signal

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

• Fly stunt manoeuvres in a helicopter

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans
- Beat the best human player in Go

https://www.youtube.com/watch?v=0JL04JJjocc

https://www.youtube.com/watch?v=No-JwwPbSLA

https://www.youtube.com/watch?v=Vr5MR51KOc8

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximization of expected cumulative reward

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximization of expected cumulative reward

Do you agree with this statement?

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - $\bullet~+/-ve$ reward for winning/losing a game

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - $\bullet~+/\text{-ve}$ reward for winning/losing a game
- Manage an investment portfolio
 - $\bullet~+ ve$ reward for each \$ in bank

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - $\bullet~+/-ve$ reward for winning/losing a game
- Manage an investment portfolio
 - $\bullet~+ ve$ reward for each \$ in bank
- Control a power station
 - $\bullet~+ ve~reward$ for producing power
 - -ve reward for exceeding safety thresholds

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - $\bullet~+/\text{-ve}$ reward for winning/losing a game
- Manage an investment portfolio
 - $\bullet~+ ve$ reward for each \$ in bank
- Control a power station
 - $\bullet~+ ve~reward$ for producing power
 - -ve reward for exceeding safety thresholds
- Make a humanoid robot walk
 - $\bullet~+ve$ reward for forward motion
 - -ve reward for falling over

- Fly stunt manoeuvres in a helicopter
 - $\bullet~+ve$ reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - $\bullet~+/-ve$ reward for winning/losing a game
- Manage an investment portfolio
 - $\bullet~+ ve$ reward for each \$ in bank
- Control a power station
 - $\bullet~+ ve~reward$ for producing power
 - -ve reward for exceeding safety thresholds
- Make a humanoid robot walk
 - $\bullet~+ve$ reward for forward motion
 - -ve reward for falling over
- Play many different Atari games better than humans
 - +/-ve reward for increasing/decreasing score

• Goal: select actions to maximize total future reward

- Goal: select actions to maximize total future reward
- Actions may have long term consequences

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

- At each step *t* the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t

• The environment:

- Receives action A_t
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t

The environment:

- Receives action A_t
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}
- t increments at env. step
$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

• i.e. all observable variables up to time t

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

• The environment state S^e_t is the environment's private representation

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward

- The environment state S^e_t is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

• The agent state S_t^a is the agent's internal representation

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of the history:

$$S_t^a = f(H_t)$$

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

• The future is independent of the past given the present

 $H_{1:t} \to S_t \to H_{t+1:\infty}$

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

• The future is independent of the past given the present

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

• Once the state is known, the history may be thrown away

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

• The future is independent of the past given the present

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. the state is a sufficient statistic of the future

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

• The future is independent of the past given the present

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. the state is a sufficient statistic of the future
- The environment state S_t^e is Markov

Definition

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, ..., S_t)$$

• The future is independent of the past given the present

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. the state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

• What if agent state = last 3 items in sequence?

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?
- What if agent state = complete sequence?

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state \neq environment state
- Formally this is a partially observable Markov decision process

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S^a_t, e.g.

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S^a_t, e.g.
 - Complete history: $S_t^a = H_t$
- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S^a_t, e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (P(S_t^e = s^1), ..., P(S_t^e = s^n))$

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S^a_t, e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (P(S_t^e = s^1), ..., P(S_t^e = s^n))$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

An RL agent may include one or more of these components:

• Policy: agent's behaviour function

An RL agent may include one or more of these components:

- Policy: agent's behaviour function
- Value function: how good is each state and/or action

An RL agent may include one or more of these components:

- Policy: agent's behaviour function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

• A policy defines the agent's behaviour

- A policy defines the agent's behaviour
- It is a map from state to action, e.g.

- A policy defines the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$

- A policy defines the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = P(A_t = a|S_t = s)$

• Value function is a prediction of future reward

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- used to select which action to take

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- Is used to select which action to take
- e.g. models the expected discounted future reward

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma R_{t+3} + \dots | S_t = s]$$

• A model predicts what the environment will do next

- A model predicts what the environment will do next
- \mathcal{P} predicts the next state

- A model predicts what the environment will do next
- \mathcal{P} predicts the next state
- \mathcal{R} predicts the next (immediate) reward, e.g.

$$\mathcal{P}^{a}_{ss'} = P(S_{t+1} = s' \mid S_t = s, A_t = a) \mathcal{R}^{a}_{s} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

- A model predicts what the environment will do next
- \mathcal{P} predicts the next state
- \mathcal{R} predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^a = P(S_{t+1} = s' \mid S_t = s, A_t = a)$$
$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

• Can be used for planning without actually performing actions

Environment

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location
- End at Goal state

Arrows represent policy $\pi(s)$

Arrows represent policy $\pi(s)$

Numbers represent value $v_{\pi}(s)$

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect (most likely is)
- Grid layout represents transition model $\mathcal{P}^a_{ss'}$
- Numbers represent immediate reward \mathcal{R}_s^a from each state s (same for all a)

Value Based

- No Policy (Implicit)
- Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
- Policy
- Value Function

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

• Reinforcement Learning:

- Reinforcement Learning:
 - The environment is initially unknown

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

• Rules of the game are unknown

- Rules of the game are unknown
- Learn directly from interactive game-play

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

• Rules of the game are known

- Rules of the game are known
- Can query emulator perfect model inside agent's brain

- Rules of the game are known
- Can query emulator perfect model inside agent's brain
- If I take action a from state s:

- Rules of the game are known
- Can query emulator perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?

- Rules of the game are known
- Can query emulator perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?

- Rules of the game are known
- Can query emulator perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy e.g. tree search

· Reinforcement learning is like trial-and-error learning

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way
- Exploration finds more information about the environment

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way
- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way
- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit

Restaurant Selection
 Exploitation Go to your favorite restaurant
 Exploration Try a new restaurant

- Restaurant Selection
 Exploitation Go to your favorite restaurant
 Exploration Try a new restaurant
- Online Banner Advertisements Exploitation Show the most successful advert Exploration Show a different advert

- Restaurant Selection
 Exploitation Go to your favorite restaurant
 Exploration Try a new restaurant
- Online Banner Advertisements
 Exploitation Show the most successful advert
 Exploration Show a different advert
- Game Playing Exploitation Play the move you believe is best Exploration Play an experimental move

- Restaurant Selection
 Exploitation Go to your favorite restaurant
 Exploration Try a new restaurant
- Online Banner Advertisements
 Exploitation Show the most successful advert
 Exploration Show a different advert
- Game Playing Exploitation Play the move you believe is best Exploration Play an experimental move
- Robot Control Exploitation Do the movement you know works best Exploration Try a different movement

• Prediction: evaluate the future How do I do given a policy?

- Prediction: evaluate the future How do I do given a policy?
- Control: optimize the future Find the best policy

Gridworld Example: Prediction

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

• What is the value function for the uniform random policy?

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

a) gridworld

b) v_*

c) π_*

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

-	\Leftrightarrow	-	\Rightarrow	-
↓	1	₊ੈ	←	┥
↓	1	₊ੈ	₊ੈ	₊
↓	1	₊ੈ	₊ੈ	↓
1	1	₊ੈ	.↓	1

a) gridworld

b) v_*

c) π_*

- What is the optimal value function over all possible policies?
- What is the optimal policy?

Markov Decision Processes

A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Reminder: Markov property

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \dots, S_t)$$

A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Reminder: Markov property

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \dots, S_t)$$

Definition (Markov Process/ Markov Chain)

A Markov Process (or Markov Chain) is a tuple $(\mathcal{S}, \mathcal{P})$

- S is a (finite) set of states
- *P* is a state transition 0 probability matrix,

$$P_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$

Example: Student Markov Chain

$$S_1, S_2, \ldots, S_T$$

C1 C2 C3 Pass Sleep

$$S_1, S_2, \ldots, S_T$$

C1 C2 C3 Pass SleepC1 FB FB C1 C2 Sleep

$$S_1, S_2, \ldots, S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep

$$S_1, S_2, \ldots, S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

A Markov reward process is a Markov chain with values.

Definition (MRP)

A Markov Reward Process is a tuple $(\mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma)$

- S is a finite set of states
- \mathcal{P} is a state transition probability matrix,

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, \dots, S_t)$$

A Markov reward process is a Markov chain with values.

Definition (MRP)

A Markov Reward Process is a tuple $(\mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma)$

- S is a finite set of states
- \mathcal{P} is a state transition probability matrix,

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, \dots, S_t)$$

• \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$

A Markov reward process is a Markov chain with values.

Definition (MRP)

A Markov Reward Process is a tuple $(\mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma)$

- S is a finite set of states
- \mathcal{P} is a state transition probability matrix,

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, \dots, S_t)$$

- \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
- γ is a discount factor, $\gamma \in [0, 1]$

Example: Student MRP

The *return* G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• The discount $\gamma \in [0,1]$ is the present value of future rewards

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k + 1 time-steps is $\gamma^k R$.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k + 1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k + 1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - $\bullet \ \gamma$ close to 1 leads to "far-sighted" evaluation

Mathematically convenient to discount rewards

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward
- It is sometimes possible to use *undiscounted* Markov reward processes (i.e. $\gamma = 1$), e.g. if all sequences terminate.

- Continue with MDP's and Bellmann Equation
- Dynamic Programming and Q-Learning