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Reminder: Branches of Machhine Learning
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Many Types and Areas of Reinforcement Learning

Georg Martius Machine Learning for Robotics May 31, 2017 3 / 47



Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning
paradigms?

• There is no supervisor, only a reward signal
• Feedback is delayed, not instantaneous
• Time really matters (sequential, non i.i.d data)
• Agent’s actions affect the subsequent data it receives
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Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter

• Defeat the world champion at Backgammon
• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon

• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon
• Manage an investment portfolio

• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon
• Manage an investment portfolio
• Control a power station

• Make a humanoid robot walk
• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon
• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk

• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon
• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans

• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples of Reinforcement Learning

• Fly stunt manoeuvres in a helicopter
• Defeat the world champion at Backgammon
• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans
• Beat the best human player in Go

Georg Martius Machine Learning for Robotics May 31, 2017 5 / 47



Examples – Helicopter Manoeuvres

https://www.youtube.com/watch?v=0JL04JJjocc
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Examples – Bipedal Robots

https://www.youtube.com/watch?v=No-JwwPbSLA
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Examples – Atari Games

https://www.youtube.com/watch?v=Vr5MR5lKOc8
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Rewards

• A reward Rt is a scalar feedback signal
• Indicates how well agent is doing at step t
• The agent’s job is to maximize cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)
All goals can be described by the maximization of expected cumulative reward

Do you agree with this statement?
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Examples of Rewards

• Fly stunt manoeuvres in a helicopter
+ve reward for following desired trajectory
-ve reward for crashing

• Defeat the world champion at Backgammon
+/-ve reward for winning/losing a game

• Manage an investment portfolio
+ve reward for each $ in bank

• Control a power station
+ve reward for producing power
-ve reward for exceeding safety thresholds

• Make a humanoid robot walk
+ve reward for forward motion
-ve reward for falling over

• Play many different Atari games better than humans
+/-ve reward for increasing/decreasing score
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Sequential Decision Making

• Goal: select actions to maximize total future reward

• Actions may have long term consequences
• Reward may be delayed
• It may be better to sacrifice immediate reward to gain more long-term

reward
• Examples:

A financial investment (may take months to mature)
Refueling a helicopter (might prevent a crash in several hours)
Blocking opponent moves (might help winning chances many moves from
now)
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Agent and Environment
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Agent and Environment

• At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

• The environment:
Receives action At

Emits observation Ot+1
Emits scalar reward Rt+1

• t increments at env. step
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History and State

• The history is the sequence of observations, actions, rewards

Ht = O1, R1, A1, ..., At−1, Ot, Rt

• i.e. all observable variables up to time t
• i.e. the sensorimotor stream of a robot or embodied agent
• What happens next depends on the history:

The agent selects actions
The environment selects observations/rewards

• State is the information used to determine what happens next
• Formally, state is a function of the history:

St = f(Ht)
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Environment/World State

• The environment state Set is the
environment’s private
representation

• i.e. whatever data the
environment uses to pick the
next observation/reward
• The environment state is not
usually visible to the agent
• Even if Set is visible, it may
contain irrelevant information
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Agent State

• The agent state Sat is the
agent’s internal representation

• i.e. whatever information the
agent uses to pick the next
action
• i.e. it is the information used by
reinforcement learning
algorithms
• It can be any function of the
history:

Sat = f(Ht)
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Information State

An information state (a.k.a. Markov state) contains all useful information from
the history.

Definition
A state St is Markov if and only if

P (St+1 | St) = P (St+1 | S1, ..., St)

• The future is independent of the past given the present

H1:t → St → Ht+1:∞

• Once the state is known, the history may be thrown away
• i.e. the state is a sufficient statistic of the future
• The environment state Set is Markov
• The history Ht is Markov
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Rat Example

• What if agent state = last 3 items in sequence?
• What if agent state = counts for lights, bells and levers?
• What if agent state = complete sequence?
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Fully Observeable Environments

Full observability: agent directly observes
environment state

Ot = Sat = Set

• Agent state = environment state =
information state
• Formally, this is a Markov decision
process (MDP)
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Partially Observable Environments

• Partial observability: agent indirectly observes environment:
A robot with camera vision isn’t told its absolute location
A trading agent only observes current prices
A poker playing agent only observes public cards

• Now agent state 6= environment state
• Formally this is a partially observable Markov decision process (POMDP)
• Agent must construct its own state representation Sat , e.g.

Complete history: Sa
t = Ht

Beliefs of environment state: Sa
t = (P (Se

t = s1), ..., P (Se
t = sn))

Recurrent neural network: Sa
t = σ(Sa

t−1Ws +OtWo)
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Major Components of an RL Agent

An RL agent may include one or more of these components:
• Policy: agent’s behaviour function

• Value function: how good is each state and/or action
• Model: agent’s representation of the environment
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Policy

• A policy defines the agent’s behaviour

• It is a map from state to action, e.g.
• Deterministic policy: a = π(s)
• Stochastic policy: π(a|s) = P (At = a|St = s)

Georg Martius Machine Learning for Robotics May 31, 2017 22 / 47



Policy

• A policy defines the agent’s behaviour
• It is a map from state to action, e.g.

• Deterministic policy: a = π(s)
• Stochastic policy: π(a|s) = P (At = a|St = s)

Georg Martius Machine Learning for Robotics May 31, 2017 22 / 47



Policy

• A policy defines the agent’s behaviour
• It is a map from state to action, e.g.
• Deterministic policy: a = π(s)

• Stochastic policy: π(a|s) = P (At = a|St = s)

Georg Martius Machine Learning for Robotics May 31, 2017 22 / 47



Policy

• A policy defines the agent’s behaviour
• It is a map from state to action, e.g.
• Deterministic policy: a = π(s)
• Stochastic policy: π(a|s) = P (At = a|St = s)

Georg Martius Machine Learning for Robotics May 31, 2017 22 / 47



Value Function

• Value function is a prediction of future reward

• Used to evaluate the goodness/badness of states
• used to select which action to take
• e.g. models the expected discounted future reward

vπ(s) = Eπ[Rt+1 + γRt+2 + γRt+3 + · · · | St = s]
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Model

• A model predicts what the environment will do next

• P predicts the next state
• R predicts the next (immediate) reward, e.g.

Pass′ = P (St+1 = s′ | St = s,At = a)
Ras = E[Rt+1 | St = s,At = a]

• Can be used for planning without actually performing actions
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Maze Example

Environment

• Rewards: −1 per time-step
• Actions: N, E, S, W
• States: Agent’s location
• End at Goal state
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Maze Example: Policy and Value Function

Arrows represent policy π(s)

Numbers represent value vπ(s)
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Maze Example: Model

• Agent may have an internal model
of the environment
• Dynamics: how actions change
the state
• Rewards: how much reward from
each state
• The model may be imperfect
(most likely is)

• Grid layout represents transition model Pass′

• Numbers represent immediate reward Ras from each state s (same for all a)
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Categorization of RL agents

• Value Based
No Policy (Implicit)
Value Function

• Policy Based
Policy
No Value Function

• Actor Critic
• Policy
• Value Function

• Model Free
Policy and/or Value Function
No Model

• Model Based
Policy and/or Value Function
Model
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RL Agent Taxonomy
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Learning and Planning

Two fundamental problems in sequential decision making
• Reinforcement Learning:

The environment is initially unknown
The agent interacts with the environment
The agent improves its policy

• Planning:

A model of the environment is known
The agent performs computations with its model (without any external
interaction)
The agent improves its policy
a.k.a. deliberation, reasoning, introspection, pondering, thought, search
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Atari Example: Reinforcement Learning

• Rules of the game are unknown

• Learn directly from interactive
game-play

• Pick actions on joystick, see
pixels and scores
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Atari Example: Planning

• Rules of the game are known

• Can query emulator
perfect model inside agent’s brain

• If I take action a from state s:

what would the next state be?
what would the score be?

• Plan ahead to find optimal policy
e.g. tree search
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Exploration and Exploitation

• Reinforcement learning is like trial-and-error learning

• The agent should discover a good policy
• From its experiences of the environment
• Without losing too much reward along the way

• Exploration finds more information about the environment
• Exploitation exploits known information to maximize reward
• It is usually important to explore as well as exploit
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Examples

• Restaurant Selection
Exploitation Go to your favorite restaurant
Exploration Try a new restaurant

• Online Banner Advertisements
Exploitation Show the most successful advert
Exploration Show a different advert

• Game Playing
Exploitation Play the move you believe is best
Exploration Play an experimental move

• Robot Control
Exploitation Do the movement you know works best
Exploration Try a different movement
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Prediction and Control

• Prediction: evaluate the future
How do I do given a policy?

• Control: optimize the future
Find the best policy
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Gridworld Example: Prediction

• What is the value function for the uniform random policy?
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Gridworld Example: Control

• What is the optimal value function over all possible policies?
• What is the optimal policy?
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Markov Decision Processes
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Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random
states S1, S2, . . . with the Markov property.

Reminder: Markov property
A state St is Markov if and only if

P (St+1 | St) = P (St+1 | S1, . . . , St)

Definition (Markov Process/ Markov Chain)
A Markov Process (or Markov Chain) is a tuple (S,P)
• S is a (finite) set of states
• P is a state transition 0 probability matrix,

Pss′ = P (St+1 = s′ | St = s)
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Example: Student Markov Chain
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Example: Student Markov Chain Episodes

Sample episodes for starting from S1 =C1

S1, S2, . . . , ST

• C1 C2 C3 Pass Sleep

• C1 FB FB C1 C2 Sleep
• C1 C2 C3 Pub C2 C3 Pass Sleep
• C1 FB FB C1 C2 C3 Pub C1 FB FB

FB C1 C2 C3 Pub C2 Sleep
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Example: Student Markov Chain Transition Matrix
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Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition (MRP)
A Markov Reward Process is a tuple (S,P,R, γ)
• S is a finite set of states
• P is a state transition probability matrix,

P (St+1 | St) = P (St+1 | S1, . . . , St)

• R is a reward function, Rs = E[Rt+1|St = s]
• γ is a discount factor, γ ∈ [0, 1]
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Example: Student MRP
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Return

Definition
The return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1

• The discount γ ∈ [0, 1] is the present value of future rewards

• The value of receiving reward R after k + 1 time-steps is γkR.
• This values immediate reward above delayed reward.

γ close to 0 leads to “myopic” evaluation
γ close to 1 leads to “far-sighted” evaluation
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Why discount?

Most Markov reward and decision processes are discounted. Why?
• Mathematically convenient to discount rewards

• Avoids infinite returns in cyclic Markov processes
• Uncertainty about the future may not be fully represented
• If the reward is financial, immediate rewards may earn more interest than

delayed rewards
• Animal/human behaviour shows preference for immediate reward
• It is sometimes possible to use undiscounted Markov reward processes (i.e.
γ = 1), e.g. if all sequences terminate.
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Next time

• Continue with MDP’s and Bellmann Equation
• Dynamic Programming and Q-Learning
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